
Rock: Cleaning Data by Embedding ML in Logic Rules
Xianchun Bao∗

Zian Bao
baoxianchun@sics.ac.cn

baozian@sics.ac.cn
Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

Binbin Bie
QingSong Duan
biebinbin@sics.ac.cn

duanqingsong@sics.ac.cn
Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

Wenfei Fan
Shenzhen Institute of

Computing Sciences, China
University of Edinburgh

United Kingdom
Beihang University, China

wenfei@inf.ed.ac.uk

Hui Lei
Daji Li

leihui@sics.ac.cn
lidaji@sics.ac.cn

Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

Wei Lin
Peng Liu

linwei@sics.ac.cn
liupeng@sics.ac.cn

Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

Zhicong Lv
Mingliang Ouyang
lvzhicong@sics.ac.cn

ouyangmingliang@sics.ac.cn
Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

Shuai Tang
Yaoshu Wang†

tangshuai@sics.ac.cn
yaoshuw@sics.ac.cn
Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

Qiyuan Wei
Min Xie

werty@sics.ac.cn
xiemin@sics.ac.cn

Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

Jing Zhang
zhangjing@sics.ac.cn
Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

Xin Zhang
zhangxinzx@sics.ac.cn
Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

Runxiao Zhao
zhaorunxiao@sics.ac.cn
Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

Shuping Zhou
zhoushuping@sics.ac.cn
Grandhoo Inc., China
Shenzhen Institute of

Computing Sciences, China

ABSTRACT
We introduce Rock, a system for cleaning relational data. Rock
implements a framework that unifies machine learning (ML) and
logic deduction by embedding ML classifiers in rules as predicates.
In a unified process, it identifies tuples that refer to the same real-
world entity, catches semantic inconsistencies among the entities,
deduces the timeliness of the attribute values of the entities, and
imputes missing values by possibly extracting data from knowledge
graphs. That is, Rock conducts entity resolution, conflict resolution,
incomplete information imputation and timeliness deduction in
the same process, makes use of their interactions and improves the
overall quality of the data. Moreover, Rock supports methods, batch
and incremental, for discovering rules from real-life data, detecting
errors with the learned rules, accumulating ground truth, and fixing
the errors, such that the corrections are logical consequences of the
rules and ground truth. We present the design and implementation
of Rock. We evaluate the scalability and accuracy of Rock, and share
lessons learned from a variety of real-life applications.

∗Author names are listed in alphabetical order.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0422-2/24/06
https://doi.org/10.1145/3626246.3653372

CCS CONCEPTS
• Information systems→ Information integration.

KEYWORDS
Data quality; entity resolution; conflict resolution; missing value
imputation; timeliness deduction; error detection; error correction

ACM Reference Format:
Xianchun Bao, Zian Bao, Binbin Bie, QingSong Duan, Wenfei Fan, Hui Lei,
Daji Li, Wei Lin, Peng Liu, Zhicong Lv, Mingliang Ouyang, Shuai Tang,
Yaoshu Wang, Qiyuan Wei, Min Xie, Jing Zhang, Xin Zhang, Runxiao Zhao,
and Shuping Zhou. 2024. Rock: Cleaning Data by Embedding ML in Logic
Rules. In Companion of the 2024 International Conference on Management of
Data (SIGMOD-Companion ’24), June 9–15, 2024, Santiago, AA, Chile. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3626246.3653372

1 INTRODUCTION
Real-life data is often dirty, evidenced by duplicates, conflicts, in-
complete information and obsolete values commonly found in our
datasets. Dirty data is costly. Gartner assessed that poor data quality
is responsible for an average of $15 million per year in losses for
organizations [46]; IBM estimated that dirty data cost the US $3.1
trillion in 2016 alone (cf. [75]); and inaccurate customer data costs
organizations 6% of their annual revenues [78]. Dirty data has been
a longstanding challenge, and remains a clear and present danger
to big data analytics. Indeed, data-driven decisions based on dirty
data can be worse than making decisions with no data.
Challenges. To cope with dirty data, there has been a large body of
work [10–13, 15, 22, 23, 25, 30, 32, 33, 47, 48, 57, 60, 66, 68, 73, 76, 82,
87, 88, 93]. Several data cleaning systems have also been developed,
from early tools for imputing census data [43, 44] to recent systems

https://doi.org/10.1145/3626246.3653372
https://doi.org/10.1145/3626246.3653372

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Xianchun Bao et al.

such as Talend [5], Amazon Glue [2] and Informatica [4].
However, to develop a system that is effective in cleaning real-life

dirty data, several immediate issues have to be addressed.
Challenge 1: Machine learning or logic deduction? Existing research
and systems on data quality are typically approached via either
logic rules [12, 13, 15, 22, 30, 32, 33, 47, 57, 88] or machine learning
(ML) [10, 11, 23, 25, 48, 60, 66, 68, 73, 76, 82, 87, 93]. Unfortunately,
none of the two is super to the other. On the one hand, it is hard
to find a small number of logic rules that cover different cases and
data in practice. On the other hand, ML solutions are probabilistic
and hard to interpret; practitioners may not want to deploy ML
models when cleaning critical data such as medical records.

Is it possible to unify ML and logic rules in the same process, to
benefit from both? How effective can such a uniform framework
be, compared to logic deduction and ML predictions alone?

Challenge 2: Functionality. Previous data cleaning systems have
mostly focused on two primitive issues of data quality:
◦ entity resolution (ER): to determine whether two tuples refer to
the same real-world entity, in order to catch duplicates; and

◦ conflict resolution (CR): to catch semantic inconsistencies among
attribute values of the entities, and resolve the conflicts.

However, there are two other critical issues of data quality:
◦ missing value imputation (MI): to enrich tuples in our datasets
by filling in the missing values (null); and

◦ timeliness deduction (TD): to deduce temporal orders on attribute
values, and infer the latest attribute values of each entity.

The need for studying these is evident, e.g., missing data is com-
mon in epidemiological research, where 42.5% of records are incom-
plete [51], and “58% of organizations make decisions based on out-
dated data” [28], although “as a healthcare, retail, or financial busi-
ness you cannot afford to make decisions based on yesterday’s data”.

Moreover, these critical issues interact with each other. On the
one hand, deducing missing values and temporal orders help us
identify entities and fix inconsistencies. On the other hand, ER and
CR facilitate it to enrich tuples by instantiating missing values and
deduce timeliness by providing more correlated values.

Is it possible to support all of ER, CR, MI and TD in a system? Can
we exploit their interactions to improve the overall data quality?

Challenge 3: Performance. To clean dirty data, a data quality system
should support the following at the very least:
◦ rule discovery: to discover logic rules and/or train ML models
with (possibly dirty and large) real-life data;

◦ error detection: to catch errors (duplicates, inconsistencies, miss-
ing and stale values) with the rules/models learned; and

◦ error correction: to fix the errors detected (merge duplicates,
resolve conflicts, fill in null values and deduce the latest values).

Criteria for an effective data quality system include (a) scala-
bility, i.e., the capability to scale with large-scale datasets, and (b)
accuracy, i.e., guarantees to minimize false positives and false nega-
tives for error detection and correction. These are highly nontrivial.
Discovery of even functional dependencies (FDs) easily takes expo-
nential time and yields an excessive number of FDs [52], and error
correction with accuracy bounds is intractable even with FDs [17].

Is it possible to have a system that supports ER, CR, MI and TD,
employs both ML models and logic rules, and at the same time, is
able to scale with large datasets? Can it guarantee that the fixes are
“certain”? That is, it ensures that each update to the data corrects
(fixes) an existing error and does not introduce new errors. This is
a must when we clean critical data such as medical records.

Rock: A system for data cleaning. In response to the practical
need, we have developed Rock [6], a system for cleaning relational
data. Rock has been deployed at banks, logistics, mobile operators
and e-commerce, among other places; it has proven effective in a
variety of applications. Rock has the following unique properties.

(1) A uniform framework. Rock implements a uniform framework
that unifies ML and logic deduction. It proposes REE++s, an exten-
sion of Entity Enhancing Rules (REEs) [36, 41] by incorporating
temporal orders, correlation models and heterogeneous entity reso-
lution (HER) [31] as predicates. REE++s subsume conditional func-
tional dependencies (CFDs) [32], denial constraints (DCs) [13] and
matching dependencies (MDs) [30] as special cases; as opposed to
previous data quality rules, REE++s may embed ML classifiers as
predicates. In this way, Rock extends traditional logic deduction
with ML models, and benefit from logic interpretation of the rules.

(2) A unified process. In addition to ER and CR, Rock supports miss-
ing data imputation (MI) and timeliness deduction (TD), by integrat-
ing logic deduction, temporal ranking, ML correlation models and
data extraction from knowledge graphs. All the four tasks can be ex-
pressed as REE++s, and hence ER, CR, MI and TD can be conducted
in the same process, and interact with each other. In particular,
by supporting HER [31] for aligning entities across relations and
graphs, Rock can extract properties from graphs to enrich relations.

(3) Scalability. Rock implements algorithms for rule discovery, error
detection and error correction [36, 37, 41]. It supports a batchmode
to conduct these on static datasets, and an incremental mode in
response to updates. All the algorithms are parallelly scalable [62],
i.e., they guarantee to reduce runtime when more machines are
used; in principle, Rock is able to scale when the data grows big.
Rock also supports other techniques to deal with big data, e.g., top-𝑘
rule discovery [37] and sampling with accuracy guarantees [36].

(4) Certain fixes. By embedding ML models in logic rules, Rock of-
fers high accuracy in error detection and error correction. Moreover,
it accumulates ground truth, i.e., validated data, when correcting
errors; it extends the chase [79] with REE++s and conflict resolution,
and references the ground truth when fixing errors. As a conse-
quences, it guarantees that fixes generated are logical consequences
of the rules and ground truth. The fixes are guaranteed to be correct,
known as certain fixes [38, 40], as long as the rules and ground truth
are correct, and if embedded ML predictions are accurate.

Organization. We present Rock as follows:
◦ entity enhancing rules REE++s underlying Rock (Section 2);
◦ the system architecture of Rock (Section 3);
◦ the process that unifies ER, CR, MI and TD (Section 4);
◦ the implementation and optimization of Rock (Section 5); and
◦ real-life applications and evaluation of Rock (Section 6).
We will discuss related data quality systems in Section 7, and

present our plan for extending Rock in Section 8.

Rock: Cleaning Data by Embedding ML in Logic Rules SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

2 EXTENDED ENTITY ENHANCING RULES
This section presents REE++s, extended Entity Enhancing Rules. We
first review REEs studied in [36, 37, 39, 41] for ER and CR (Sec-
tion 2.1). We then extend REEs for deducing timeliness (TD, Sec-
tion 2.2) and imputing missing values (MI, Section 2.3). This section
reveals the entire class of REE++s underlying Rock for the first time.

Preliminaries. We define REE++s on a database schema R = (𝑅1, . . . ,
𝑅𝑚), where 𝑅 𝑗 is a relation schema 𝑅(𝐴1 : 𝜏1, . . . , 𝐴𝑘 : 𝜏𝑘), and each
𝐴𝑖 is an attribute of type 𝜏𝑖 . An instance D of R is (𝐷1, . . . , 𝐷𝑚),
where 𝐷𝑖 is a relation of 𝑅𝑖 . Following [21], we assume that each
tuple 𝑡 has an EID attribute, identifying the entity that 𝑡 represents.

We represent a knowledge graph as𝐺 = (𝑉 , 𝐸, 𝐿), where (a)𝑉 is
a finite set of vertices, (b) 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges, and (c) 𝐿 is
a function such that for each vertex 𝑣 ∈ 𝑉 (resp. edge 𝑒 ∈ 𝐸), 𝐿(𝑣)
(resp. 𝐿(𝑒)) is a vertex (resp. edge) label. Here an edge label typifies
predicates while vertex labels may carry values.

A label path is a list 𝜌 = (𝑙1, . . . , 𝑙𝑛) of edge labels. A match of 𝜌
in𝐺 is a list (𝑣0, 𝑣1, . . . , 𝑣𝑛) such that (𝑣𝑖−1, 𝑙𝑖−1, 𝑣𝑖) is an edge in𝐺 .

2.1 REEs for ER and CR
The REEs reported in [36, 39, 41] have the following predicates.
Predicates. Predicates over schema R are defined as follows:

𝑝 ::= 𝑅(𝑡) | 𝑡 .𝐴 ⊕ 𝑐 | 𝑡 .𝐴 ⊕ 𝑠 .𝐵 | M(𝑡 [𝐴], 𝑠 [𝐵]),
where ⊕ is an operator in {=,≠, <, ≤, >, ≥}. Following tuple rela-
tional calculus [8], (a) 𝑅(𝑡) is a relation atom over R, where 𝑅 ∈ R,
and 𝑡 is a tuple variable bounded by 𝑅(𝑡); (b) 𝑡 .𝐴 denotes an attribute
of 𝑡 when 𝑡 is bounded by 𝑅(𝑡) and𝐴 is an attribute in 𝑅; (c) 𝑡 .𝐴 ⊕ 𝑐

is a constant predicate when 𝑐 is a value in the domain of 𝐴; and
(d) 𝑡 .𝐴 ⊕ 𝑠 .𝐵 compares compatible attributes 𝑡 .𝐴 and 𝑠 .𝐵, i.e., tuple
𝑡 (resp. 𝑠) is bounded by 𝑅(𝑡) (resp. 𝑅′ (𝑠)), and 𝐴 ∈ 𝑅 and 𝐵 ∈ 𝑅′

have the same type. Moreover, (e)M(𝑡 [𝐴], 𝑠 [𝐵]) is an ML predicate,
where 𝑡 [𝐴] and 𝑠 [𝐵] are vectors of pairwise compatible attributes.

ML models. HereM can be any existing ML model that returns a
Boolean value, e.g.,Mreg ≥ 𝛿 for the strength of a regression model
Mreg and a predefined threshold 𝛿 . We considerM such as (1)NLP
models, e.g., Bert [24], for text classification; (2) ER models and
link prediction models, e.g., Bert [24] for semantic matching; and
(3) models for error detection and correction, e.g., generative mod-
els [92], holistic ML models [66, 76] and statistical models [90, 91].

REEs. An entity enhancing rule (REE) 𝜑 over R is defined as
𝜑 : 𝑋 → 𝑝0,

where 𝑋 is a conjunction of predicates over R, and 𝑝0 is a predicate
over R such that all tuple variables in 𝜑 are bounded in 𝑋 . We refer
to 𝑋 as the precondition of 𝜑 , and 𝑝0 as the consequence of 𝜑 .

Example 1: Consider an e-commerce database with self-explained
schemas Person(pid, last_name (LN), first_name (FN), gender,
home, status, spouse), Store(sid, name, type, location, accu_sales
(accumulated sales), area_code) and Transaction(pid, sid, commo-
dity(com), manufactory(mfg), price, date) in Tables 1-3. The erro-
neous values are in bold. Three simple REEs are given as follows.

𝜑1 : Trans(𝑡) ∧ Trans(𝑠) ∧ MER (𝑡 .com, 𝑠 .com) ∧ 𝑡 .date = 𝑠 .date
∧ 𝑡 .sid = 𝑠 .sid → 𝑡 .pid = 𝑠 .pid, where MER is an ER model to
identify two commodities that use the same discount code. The rule
identifies two persons since the same discount code can be used at

most once in the same store by a person during the discount period.

𝜑2 : Trans(𝑡) ∧ Trans(𝑠) ∧ 𝑡 .com = 𝑠 .com → 𝑡 .mfg = 𝑠 .mfg.
This REE++s says that the manufactory must be the same if the
commodities are the same; it can fix the erroneous manufactory.

𝜑3 : Person(𝑡)∧Person(𝑠)∧𝑋 → Mad (𝑡 [home], 𝑠 [home]), where
Mad is a model to check address closeness, 𝑋 =

∧
𝐴∈T 𝑡 .𝐴 = 𝑠 .𝐴

and T is a set of attributes about home addresses (not shown),
including zipcode and neighborhood information. Here conditions
in 𝑋 explain whyMad (𝑡 [home], 𝑠 [home]) predicts true. 2

Semantics. Consider an instance D of R. A valuation ℎ of tuple
variables of 𝜑 in D, or simply a valuation of 𝜑 , is a mapping that
instantiates 𝑡 in each 𝑅(𝑡) with a tuple in a relation 𝐷 of D.

We write ℎ |= 𝑝 for predicate 𝑝 : (1) if 𝑝 is 𝑅(𝑡), 𝑡 ⊕ 𝑐 or 𝑡 .𝐴 ⊕ 𝑠 .𝐵,
thenℎ |= 𝑝 is interpreted as in tuple relational calculus following the
standard semantics of first-order logic [8]; (2) if 𝑝 isM(𝑡 [𝐴], 𝑠 [𝐵]),
then ℎ |= 𝑝 ifM predicts true on (ℎ(𝑡) [𝐴], ℎ(𝑠) [𝐵]).

Given a conjunction 𝑋 of predicates, we say ℎ |= 𝑋 if for all
predicates 𝑝 in 𝑋 , ℎ |= 𝑝 . Given an REE 𝜑 , we write ℎ |= 𝜑 such that
if ℎ |= 𝑋 , then ℎ |= 𝑝0. An instance D of R satisfies 𝜑 , denoted by
D |= 𝜑 , if for all valuations ℎ of tuple variables of 𝜑 in D, ℎ |= 𝜑 .
We write D |= Σ for a set Σ of REEs if for all 𝜑 ∈ Σ, D |= 𝜑 .

Properties. (1) As shown in [39],REEs subsumeCFDs,DCs andMDs
as special cases. (2) As indicated in Example 1, REEs may unify ER,
CR and association analysis. An REE may carry multiple tuple
variables for collective analysis across tables [16]. (3) As shown by
𝜑3, for certain ML models M, one can discover logic conditions 𝑋
to provide high-level rational behind predictions ofM in an REE of
the form𝑋 → M(𝑡 [𝐴], 𝑠 [𝐵]), whenM is the rule consequence. (4)
We can embedM as predicates in precondition 𝑋 (see 𝜑1), not to
feed REEs as features to ML models. As shown in [29], this strategy
can filter false positives/negatives of predictions of M with 𝑋 =

M(𝑡 [𝐴], 𝑠 [𝐵]) ∧𝑋1, i.e.,we can enrichM with extra conditions𝑋1.

2.2 REE++s for Deducing Timeliness
In practice we often need to determine temporal orders on attribute
values. To formalize this intuition, we start with some notations.
Temporal relations. A temporal relation is (𝐷,𝑇), where (a) 𝐷 is a
normal relation of schema 𝑅, and (b) 𝑇 is a partial function that as-
sociates a timestamp 𝑇 (𝑡 [𝐴]) with the 𝐴-attribute of a tuple 𝑡 in 𝐷 .

The timestamp indicates that at the time𝑇 (𝑡 [𝐴]), the𝐴-attribute
value of tuple 𝑡 is correct and up-to-date. A temporal relation ex-
tends a relation with available timestamps. In the same tuple 𝑡 , 𝑡 [𝐴]
and 𝑡 [𝐵] may bear different timestamps for different 𝐴 and 𝐵, since
different attributes of 𝑡 may come from different data sources.

Temporal orders. A temporal order on attribute 𝐴 of 𝐷 is a partial
order ⪯𝐴 such that for all tuples 𝑡1 and 𝑡2 in 𝐷 , 𝑡2 ⪯𝐴 𝑡1 if the value
in 𝑡1 [𝐴] is at least as current as 𝑡2 [𝐴]. Note that 𝑡2 ⪯𝐴 𝑡1 ranks
the timeliness of the 𝐴-attributes of tuples 𝑡1 and 𝑡2, not values
detached from the tuples. Similarly, a strict partial order 𝑡2 ≺𝐴 𝑡1
says that 𝑡1 [𝐴] is more current than 𝑡2 [𝐴]. We represent ⪯𝐴 as a set
of tuple pairs such that (𝑡2, 𝑡1) ∈ ⪯𝐴 iff 𝑡2 ⪯𝐴 𝑡1; similarly for ≺𝐴 .

In particular, if 𝑇 (𝑡1 [𝐴]) and 𝑇 (𝑡2 [𝐴]) are both defined and if
𝑇 (𝑡2 [𝐴]) ≤ 𝑇 (𝑡1 [𝐴]), then 𝑡2 ⪯𝐴 𝑡1, i.e., 𝑡1 [𝐴] is confirmed at a
later timestamp and is thus considered at least as current as 𝑡2 [𝐴].

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Xianchun Bao et al.

tid pid LN FN gender home status spouse
𝑡1 𝑝1 Jones Christine F 5 Beijing West Road single n/a
𝑡2 𝑝2 Smith Christine F 5 West Road single 𝑝3
𝑡3 𝑝2 Smith Christine F 12 Beijing Road married 𝑝4
𝑡4 𝑝3 Smith George M 12 Beijing Road married 𝑝2
𝑡5 𝑝4 Smith George M null null null

Table 1: Example Person relation 𝐷1
tid sid name type location accu_scales area_code
𝑡6 𝑠1 Apple Jingdong Self-run Electron. Beijing 15M null
𝑡7 𝑠2 Apple Taobao Flagship Electron. null null null
𝑡8 𝑠3 Huawei Flagship Electron. Beijing 11M null
𝑡9 𝑠4 Huawei Sports Shanghai 10M 021
𝑡10 𝑠5 Nike China Sports Shanghai null 021

Table 2: Example Store relation 𝐷2
tid pid sid com mfg price date
𝑡11 𝑝1 𝑠2 IPhone 13 Apple 9000 2020-12-18
𝑡12 𝑝1 𝑠1 IPhone 14 (Discount ID 41) Apple 6500 2021-11-11
𝑡13 𝑝2 𝑠1 IPhone 14 (Discount Code 41) Apple null 2021-11-11
𝑡14 𝑝3 𝑠3 Mate X2 (Limited Sold) Huawei 5200 2023-8-12
𝑡15 𝑝4 𝑠4 Mate X2 (Limited Sold) Apple null 2023-8-12

Table 3: Example Transaction (Trans) relation 𝐷3

Temporal instances. Consider an instance D = (𝐷1, . . . , 𝐷𝑚) of
database schema R, and temporal relations (𝐷𝑖 ,𝑇𝑖) for 𝑖 ∈ [1,𝑚]. A
temporal instance D𝑡 of schema R is (D, ⪯𝐴1 , . . . , ⪯𝐴𝑛

,𝑇), where𝑇
is
⋃

𝑖∈[1,𝑚] 𝑇𝑖 , 𝐴𝑖 ranges over attributes of R (𝑖 ∈ [1, 𝑛]), and each
⪯𝐴𝑖

is a temporal order on 𝐴𝑖 . We assume w.l.o.g. that attributes
are distinct across relations, e.g., prefixed by its relation name.

That is, the temporal instanceD𝑡 extendsD with explicit partial
temporal orders ⪯𝐴𝑖

, one for each attribute 𝐴𝑖 in R (𝑖 ∈ [1, 𝑛]).
ML ranking model. Rock has trained a pairwise ranking model [42],
referred to asMrank, by interleaving model learning and verifica-
tion with currency constraints [34]. Given any tuples 𝑡1 and 𝑡2 of a
relation 𝐷 and any attribute 𝐴 of 𝐷 , Mrank (𝑡1, 𝑡2, ⊗𝐴) returns true
if it predicts 𝑡1 ⊗𝐴 𝑡2, and false otherwise, where ⊗𝐴 is either ⪯𝐴
or ≺𝐴 . We find that Mrank has 𝐹 -measure consistently above 0.80.

Extending REEs. REE++s also support temporal predicates below:
𝑝 ::= 𝑡 ⪯𝐴 𝑠 | 𝑡 ≺𝐴 𝑠,

for tuple variables 𝑡 and 𝑠 bounded by the same relation schema 𝑅
that has attribute𝐴, in addition to the predicates listed in Section 2.1.

An REE++ also has the form 𝑋 → 𝑝0. The semantics of such
REE++s is a straightforward extension of the one in Section 2.1.

In particular, REE++s allowMrank (𝑡1, 𝑡2, ⊗𝐴) as an ML predicate,
where Mrank is the ML temporal ranking model of [42], ⊗𝐴 is ⪯𝐴
or ≺𝐴 , and 𝑡1 (resp. 𝑡2) is bounded by 𝑅(𝑡1) (resp. 𝑅(𝑡2)).
Example 2: REE++s with temporal predicates can express interest-
ing properties, e.g., monotonicity, comonotonicity and correlation.

𝜑4 : Person(𝑡) ∧ Person(𝑠) ∧ 𝑡 .status = “single” ∧ 𝑠 .status =

“married” → 𝑡 ⪯status 𝑠 . It says marital status only changes mono-
tonically, i.e., from single to married, not the other way around [18].

𝜑5 : Person(𝑡) ∧ Person(𝑠) ∧ 𝑡 ⪯status 𝑠 → 𝑡 ⪯home 𝑠, i.e., ⪯status
and ⪯home are often comonotonic: when the marital status of a
person changes, this person may move to a different house.

𝜑6 : Store(𝑡) ∧ Store(𝑠) ∧ 𝑡 .location = “Shanghai” ∧ 𝑠 .location =

“Beijing” ∧ 𝑡 .accu_sales ≤ 𝑠 .accu_sales → 𝑡 ⪯location 𝑠 . Here 𝜑6
correlates multiple attributes to capture implicit ordering. Note that
a store can move from Beijing to Shanghai and further from Shang-
hai to Beijing.We can use its accumulated sales as an additional hint,
which changes monotonically, to deduce its current location. 2

2.3 REE++s for Imputing Missing Data
Rock fills in missing values by unifying three strategies: logic, ML
prediction and data extraction from knowledge graphs. It conducts
these by using REE++s with the following additional predicates.
Predicates. In addition to predicates given earlier, REE++s support:

𝑝 ::= vertex(𝑥,𝐺) | HER(𝑡, 𝑥) | match(𝑡 .𝐴, 𝑥 .𝜌) | 𝑡 [𝐴] = val(𝑥 .𝜌) |
M𝑐 (𝑡 [𝐴], 𝑡 [𝐵]) ≥ 𝛿 | M𝑐 (𝑡 [𝐴], 𝑡 [𝐵]=𝑐) ≥ 𝛿 | 𝑡 [𝐵] = M𝑑 (𝑡 [𝐴], 𝐵) .

Here (a) 𝑥 in vertex(𝑥,𝐺) is a variable denoting a vertex in knowl-
edge graph 𝐺 , referred to as a variable bounded by vertex(𝑥,𝐺). (b)
If 𝑥 is bounded by vertex(𝑥,𝐺) and 𝑡 is bounded by 𝑅(𝑡), HER(𝑡, 𝑥)
is a Boolean function that returns true if tuple 𝑡 and vertex 𝑥 refer to
the same entity. (c) If 𝜌 is a label path and if 𝑥 and 𝑡 are bounded as
above,match(𝑡 .𝐴, 𝑥 .𝜌) checks whether the path 𝜌 from vertex 𝑥 en-
codes the 𝐴-attribute of tuple 𝑡 . (d) If 𝑡 and 𝑥 are bounded as above
and match(𝑡 .𝐴, 𝑥 .𝜌) returns true, 𝑡 [𝐴] = val(𝑥 .𝜌) indicates that
the𝐴-attribute of 𝑡 takes the value (label) of the last vertex 𝑣 on the
match of 𝜌 from vertex 𝑥 . (e) ML modelM𝑐 assesses the strength
of the correlation between (partial) tuple 𝑡 [𝐴] and the 𝐵-attribute
value 𝑡 [𝐵]; inM𝑐 (𝑡 [𝐴], 𝑐) ≥ 𝛿 , 𝛿 is a strength threshold. (f) Given a
partial tuple 𝑡 [𝐴], ML modelM𝑑 predicts a value for its 𝐵-attribute.

We remark the following about these new predicates.
(1) Several methods for implementingHER(𝑡, 𝑥) are already in place,
e.g., rule-based JedAI [70], parametric simulation [31], and ML
models Silk [54] and MAGNN [45]. Rock supports [31] as a Boolean
function to check whether a tuple in a relation and a vertex in a
graph refer to the same entity (heterogeneous entity resolution).

(2) Rock has implemented match(𝑡 .𝐴, 𝑥 .𝜌) by using a Long-Short
Term Memory (LSTM) network [50] as shown in [31].

(3) Predicates vertex(𝑥,𝐺), HER(𝑡, 𝑥), match(𝑡 .𝐴, 𝑥 .𝜌) and 𝑡 [𝐴] =
val(𝑥 .𝜌) aim to identify entities across relation 𝐷 and knowledge
graph 𝐺 , and extract data from 𝐺 to instantiate the missing values
of attribute 𝑡 [𝐴] in 𝐷 . We refer to them as extraction predicates.

(4) Predicate M𝑐 (𝑡 [𝐴], 𝑡 [𝐵])≥𝛿 and M𝑐 (𝑡 [𝐴], 𝑐)≥𝛿 assess corre-
lation between values. Here 𝑡 [𝐵] = M𝑑 (𝑡 [𝐴], 𝐵) suggests a value
for (missing) attribute 𝐵. We refer to them as correlation predicates.

Extended rules. An REE++ 𝜑 also has the form 𝑋 → 𝑝0 such
that all tuple variables and vertex variables in 𝜑 are bounded in 𝑋 .
Intuitively, when 𝑝0 is 𝑡 [𝐴] = val(𝑥 .𝜌) or 𝑡 [𝐵] = M𝑑 (𝑡 [𝐴], 𝐵), the
rule fills in missing values by extracting data from a knowledge base
or employing ML prediction of an accurate modelM𝑑 , respectively.

Example 3: The following REE++s impute missing values.
𝜑7 : Store(𝑡) ∧ vertex(𝑥,Wiki) ∧ HER(𝑡, 𝑥) ∧ match(𝑡 [location],
𝑥 .(LocationAt)) → 𝑡 [location] = val(𝑥 .(LocationAt)). It says that
if a store 𝑡 matches a vertex 𝑥 in WikiPedia and if 𝑥 reaches vertex
𝑣 via path 𝜌 = (LocationAt), let 𝑡 [location] take 𝐿(𝑣) as its value.
𝜑8 : Trans(𝑡) ∧ null(𝑡 [price]) → 𝑡 [price] = M𝑑 (𝑡 [𝐴], price),
where null(𝑡 [price]) is a syntactic abbreviation to check whether
𝑡 [price] carries null value and 𝐴 is the set of all validated values of
𝑡 . This REE++s predicts the missing price of 𝑡 via validated values. 2

Semantics. We extend the notion of valuation to be a mapping ℎ

that instantiates each tuple variable 𝑡 with a tuple in a database D,
and each vertex variable 𝑥 with a vertex in a knowledge graph 𝐺 .

Rock: Cleaning Data by Embedding ML in Logic Rules SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

Figure 1: Architecture of Rock

For the additional predicates 𝑝 , a valuation ℎ satisfies 𝑝 , denoted
by ℎ |= 𝑝 , if the following is satisfied. (a) If 𝑝 is HER(𝑡, 𝑥), then ℎ(𝑡)
andℎ(𝑥) refer to the same entity as determined by the Boolean func-
tion HER. (b) If 𝑝 is match(𝑡 .𝐴, 𝑥 .𝜌), then the labels on the path 𝜌

match the attribute 𝐴 of schema 𝑅, and there exists a match of path
𝜌 from ℎ(𝑥), where 𝑡 is bounded by 𝑅(𝑡). (c) If 𝑝 is 𝑡 [𝐴] = val(𝑥 .𝜌),
then the match of 𝜌 from ℎ(𝑥) reaches a vertex 𝑣 in𝐺 , and the value
of ℎ(𝑡) [𝐴] is equal to the value (label) of 𝑣 . (d) If 𝑝 isM𝑐 (𝑡 [𝐴], 𝑐)≥𝛿
(resp. M𝑐 (𝑡 [𝐴], 𝑡 [𝐵])≥𝛿), let 𝑑 be the strength of the correlation
between ℎ(𝑡) [𝐴] and 𝑐 (resp. 𝑡 [𝐵]) assessed byM𝑐 , then 𝑑≥𝛿 . (e)
If 𝑝 is 𝑡 [𝐵] = M𝑑 (𝑡 [𝐴], 𝐵), then the value of 𝑡 [𝐵] is equal to the
𝐵-attribute value suggested byM𝑑 for partial tuple 𝑡 [𝐴].

3 SYSTEM ARCHITECTURE
This section presents the architecture and workflow of Rock.
Architecture. As shown in Figure 1, Rock is developed based on
a three-tier architecture. User interface (UI) is the topmost level. It
displays standard graphical interfaces, receives user requests, com-
municates with other layers via Web socket (WS) and returns the
results to users. The business logic layer (BLL) conducts processing.
It also moves and processes data between the two surrounding
layers. The data access layer (DAL) provides APIs for BLL to access
and manage the stored data. The retrieved data is passed back to
BLL for processing, and is eventually returned back to the users.

Workflow. Given a dataset D of schema R, Rock first discovers a
set Σ of REE++s over R offline. It then detects and fixes errors in D
online, by employing the REE++s in Σ. If the users request to correct
the errors, Rock chases D with Σ to conduct “deep” cleaning in
parallel. Moreover, the users may opt to employ Rock to monitor
changes to D, and incrementally detect and fix errors in response
to updates. These are carried out by the following key modules.

Rule discovery. Rock supports three algorithms for mining/learning
REE++s from a (possibly large) dataset D. Rule mining methods
often return excessive candidates and incur prohibitive cost. To
overcome these, Rock supports (a) a top-𝑘 method [37] that learns
a model for ranking REE++s based on both objective measures (con-
fidence, support) and subjective measures (users’ preference and
unexpectedness), and mines top-ranked REE++s; (b) an anytime al-
gorithm [37] for successive REE++ mining via lazy evaluation, and
(c) a multi-round sampling method [36] that mines REE++s from a
fraction of D and guarantees their accuracy (precision and recall)
under a probabilistic bound. The algorithms substantially reduce the
discovery cost and find REE++s that meet the need of different users.

Error detection. Given a set Σ of REE++s and a dataset D, Rock de-
tects errors in D as violations of REE++s in Σ (see Section 4.2). The
errors includes duplicates, semantic inconsistencies, obsolete values
and missing values. Rock also incrementally detects errors in re-
sponse to updates ΔD to D. It implements parallel algorithms and
parallel incremental algorithms for error detection, which extend
the algorithms of [41], both parallelly scalable to scale with largeD.

Error correction. To correct the errors detected, Rock extends the
classic chase [79] with conflict resolution strategies [35] to con-
duct “deep cleaning”, and recursively propagate the corrections. It
conducts ER, CR, TD and MI in the same chase process. Rock accu-
mulates ground truth in the process and references the ground truth
when fixing errors. The chase is Church-Rosser [8], i.e., it converges
at the same result no matter what rules in Σ are used and in what or-
der the rules are applied. The errors fixed are logical consequences
of the rules and ground truth; as long as the rules and ground truth
are correct, and if ML predicates in REE++s are accurate, the fixes are
correct, known as certain fixes [38]. Rock corrects errors in batch
and incremental modes; both algorithms are parallelly scalable.

4 A UNIFORM PROCESS
This section presents how Rock identifies tuples (ER), resolves in-
consistencies (CR), deduces temporal orders (TD) and imputes miss-
ing values (MI) in the same process. We first extend the chase [79]
(Section 4.1), and then show how to leverage the interactions of the
four and improve the overall data quality via the chase (Section 4.2).

4.1 Chasing with REE++s
To conduct ER, CR, TD and MI uniformly, we mine a set Σ of REE++s
and chases the data with the REE++s. Below we give an overview
of the chase with REE++s. We start with fixes and ground truth, and
then extend the chase [79] with the Church-Rosser property [8].

Fixes. Given a set Σ of REE++s, we apply them to deduce fixes in D,
maintained in𝑈 = (E=, E⪯). For each tuple in D with id EID (resp.
each 𝐴-attribute of EID), a set [EID]= (resp. [EID.𝐴]=) is in E= ,
including the ids of entities that are validated to be the same as EID
(resp. the constant 𝑐 such that EID.𝐴 = 𝑐 is validated). For each at-
tribute𝐴 of schema 𝑅 in R, a set [𝐴]⪯ is in E⪯ , including all ranked
pairs (𝑡1, 𝑡2) such that 𝑡1 ⪯𝐴 𝑡2 is validated. Intuitively, the fixes
tell us what entities should be identified, what value an attribute
should take, and how attribute values are temporally ordered.

Validity.We say that𝑈 is valid if it has no conflicting fixes in𝑈 , e.g.,
there exist no attribute𝐴, entity id EID and tuples 𝑡1, 𝑡2 such that (a)
[EID.𝐴]= includes both constants 𝑐 and 𝑑 , but 𝑐 ≠ 𝑑 ; that is, each
attribute has a unique value; and (b) [𝐴]⪯ includes both ranked
pairs (𝑡1, 𝑡2) and (𝑡2, 𝑡1), but either 𝑡1 [𝐴] ≺ 𝑡2 [𝐴] or 𝑡2 [𝐴] ≺ 𝑡1 [𝐴].
Ground truth. To justify the correctness of fixes, we only apply
an REE++ in Σ if its precondition is satisfied by a collection of
“ground truth”, which is a set Γ = (Γ=, Γ⪯) of validated data, where
Γ= (resp. Γ⪯) is enclosed in E= (resp. E⪯). Typically, Γ= is initialized
based on master data or high-quality knowledge bases, and Γ⪯ is
initialized with the temporal orders in D with initial timestamps.
Later, the ground truth in Γ is accumulated and expanded with
data validated during chasing via possibly user interaction.

The chase. We deduce fixes by chasing D with REE++s in Σ and

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Xianchun Bao et al.

Figure 2: The workflow of chasing

ground truth in Γ. Specifically, the 𝑖-th chase step of D by Σ is:
𝑈 𝑖 ⇒(𝜑,ℎ) 𝑈 𝑖+1,

where 𝜑 : 𝑋 → 𝑝0 is an REE++ in Σ, ℎ is a valuation of 𝜑 in D, and
the application of (𝜑,ℎ) should satisfy the following conditions:
(1) All predicates 𝑝 ∈ 𝑋 are validated by𝑈 , e.g., if 𝑝 is 𝑡 [𝐴] = 𝑐 , then

𝑡 [𝐴] is validated to be 𝑐 in [EID.𝐴]=. If 𝑝 isM(𝑡 [𝐴], 𝑠 [𝐵]), each
𝐴 ∈ 𝐴 (resp. 𝐵 ∈ 𝐵) is validated in [EID.𝐴]= (resp. [EID.𝐵]=),
andM(𝑡 [𝐴], 𝑠 [𝐵]) = true; similarly for other predicates.

(2) The consequence 𝑝0 extends𝑈 𝑖 to𝑈 𝑖+1, e.g., if 𝑝0 is 𝑡1 ⪯ 𝑡2, then
add pair (𝑡1, 𝑡2) to [𝐴]⪯ ; similarly for other predicates.

Chasing. A chasing sequence 𝜉 of D by (Σ, Γ) is

𝑈 0, . . . ,𝑈 𝑘 ,

where𝑈 0 = Γ. For 𝑖 ∈ [1, 𝑘], there exist REE++ 𝜑 and valuation ℎ of
𝜑 such that 𝑈 𝑖 ⇒(𝜑,ℎ) 𝑈 𝑖+1 is a valid chase step, i.e.,𝑈 𝑖+1 is valid.

A chasing sequence 𝜉 terminates if either (a) no 𝜑 in Σ can be
applied; if so, 𝜉 is valid, and 𝑈 𝑘 is its result; or (b) there exist 𝜑,ℎ
and𝑈 𝑘+1 such that𝑈 𝑘 ⇒(𝜑,ℎ) 𝑈 𝑘+1 but𝑈 𝑘+1 is invalid (conflict).

Church-Rosser. Following [39, 79], one can verify that the chase is
Church-Rosser since for any set Σ of REE++s, collection Γ of ground
truth, and instance D, all chasing sequences of D by (Σ, Γ) termi-
nate and converge at the same result, denoted byChase(D, Σ, Γ), no
matter what REE++s in Σ are used and in what order they are applied.

Implementing the chase. Although conceptually simple, we can-
not directly apply the chase, for two reasons. (a) The enumeration
of valuations is costly and worse still, the application of a valuation
may rely on other valuations, e.g., not-yet-validated 𝑝 may become
validated after certain chase steps. (b) The chase may terminate at
an invalid result. If so, we need to resolve conflicts.

Novelty. To cope with these challenges, we implement the chase in
a more efficient way. Its novelty includes the following:
(a) We maintain designated data structures to record temporary

chasing results, so that valuations are activated lazily.
(b) We develop learning-based strategies to resolve conflicts.
(c) We deduce certain fixes such that each fix is correct under certain

conditions, i.e., it fixes an error and introduces no new errors.

Workflow. As shown in Figure 2, the chasing service is initiated
by a front-end request. It starts a process for the distributed work
dispatching, scheduling and basic I/O; a workflow manager is used
to control the chasing process, which consists of three components:
(1) preprocessing, (2) chasing, and (3) data quality assessment.

In the preprocessing step, Rock loads data and rules, initializes
the ground truth and builds the data structures for lazy activation.

After preprocessing, Rock proceeds to the chasing step. An
REE++ activator triggers REE++s so that only valuations that de-
duce unknown fixes are generated. A fix is unknown if it is neither
in the ground truth nor has not been deduced before. We support
both batch and incremental modes for REE++ activation. In the
incremental mode, an REE++ 𝜑 : 𝑋 → 𝑝0 is activated if at least
one predicate in 𝑋 is validated by the updated data; in the batch
mode, as long as there exist predicates in𝑋 that are validated by the
ground truth, this REE++ is activated. The activated REE++s are then
forwarded to an executor to perform the chase steps. The fixes de-
duced are maintained in a collection, whose validity is periodically
checked. If there are conflicts in the fixes, we resolve the conflict
(see Section 4.2). Otherwise, we accumulate the deduced fixes as
new ground truth (possibly with user verification), which may in
turn activate more REE++s and the chasing process continues.

Rock adopts built-in constraints and user-defined templates to
monitor data quality in terms of completeness, timeliness, validity
and consistency [3], e.g., checking nulls/duplicates in an attribute.

4.2 Deduction with the Chase
Belowwe first present the designated types of REE++s for each of ER,
CR, TD and MI. Then we outline how they interact with each other.

ER + CR. To conduct ER, we employ REE++s in Σ with their conse-
quences in the form of 𝑡 .EID = 𝑠 .EID or 𝑡 .EID ≠ 𝑠 .EID, for checking
the entities that 𝑡 and 𝑠 represent. To conduct CR, we check whether
attribute values violate the data regularity, where such regularity
is modeled by enforcing another type of REE++s in Σ, whose con-
sequences have the form 𝑡 .𝐴 ⊕ 𝑐 or 𝑡 .𝐴 ⊕ 𝑠 .𝐵. Specifically, given an
REE++ 𝜑 : 𝑋 → 𝑝0, a violation of 𝜑 in D is a valuation ℎ of 𝜑 such
that ℎ |= 𝑋 but ℎ ̸ |= 𝑝0, i.e., ℎ witnesses that D ̸|= 𝜑 . The goal of CR
is to identify all such violations and correct the values if needed.

Example 4: Some commodities are sold limited in a special store.
ModelMlimited (𝑡 [com], 𝑠 [com]) checks whether two commodities
are sold limited in the same store. REE++s below can be used for ER
and CR, by embeddingMlimited as an ML predicate.

𝜑9 : Trans(𝑡) ∧ Trans(𝑠) ∧ Mlimited (𝑡 [com], 𝑠 [com]) → 𝑡 .sid =

𝑠 .sid. Since the commodities are sold limited in the same store
(checked byMlimited), REE++ 𝜑9 identifies the two store ids.

𝜑10 : Trans(𝑡) ∧ Trans(𝑡 ′) ∧ Store(𝑠) ∧ Store(𝑠′) ∧ 𝑡 .sid = 𝑠 .sid ∧
𝑡 ′ .sid = 𝑠′ .sid ∧ Mlimited (𝑡 [com], 𝑡 ′ [com]) → 𝑠 .type = 𝑠′ .type.
This rule conducts CR across two tables; it states that the same
commodity must be sold in the same type of stores. 2

TD. We adopt REE++s𝑋 → 𝑝0, where 𝑝0 is 𝑡 ⪯𝐴 𝑠 or 𝑡 ≺𝐴 𝑠 . Here𝑋
can be either (1) a conjunction of predicates of Section 2.1 and possi-
bly temporal predicates, or (2) 𝑅(𝑡1) ∧𝑅(𝑡2) ∧Mrank (𝑡1, 𝑡2, ⊗𝐴) →
𝑡1 ⊗𝐴 𝑡2, where Mrank is an ranking model [42] and ⊗𝐴 is ≺𝐴 or
⪯𝐴; it returns true if it predicts 𝑡1 ⊗𝐴 𝑡2 and false otherwise.

The ranking modelMrank is trained under a creator-critic frame-
work, by interleaving learning and verification with currency con-
straints [42]. The creator ranks the temporal orders viaMrank on
attribute values, followed by the critic that validates the ranking and
deduces more ranked pairs. The critic produces augmented training
data forMrank to improve its ranking. HereMrank is trained by ar-

Rock: Cleaning Data by Embedding ML in Logic Rules SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

ranging values chronologically by their distances to a target in the
embedding space, and using the distance to quantify the timeliness.

Example 5: Besides REE++s 𝜑4 − 𝜑6 in Example 2, we can use the
following REE++ to deduce timeliness with the ranking model:
𝜑11 : Person(𝑡) ∧ Person(𝑠) ∧Mrank (𝑡, 𝑠, ⪯LN) → 𝑡 ⪯LN 𝑠 , which
deduces the currency of LN-attribute values based onMrank. 2

MI. When imputing missing values, we combine logic, ML predic-
tions and data extraction from knowledge graphs. Specifically, we
use the following three types of REE++s, prioritizing the first two.
(1) (Logic) REE++s of the form 𝑋 → 𝑡 [𝐴] = 𝑐 , where precondition 𝑋
may use ML predicatesM𝑐 ≥ 𝛿 to assess the correlation between
attribute values, e.g., 𝑅(𝑡) ∧ M𝑐 (𝑡 [𝐴], 𝑡 [𝐵] = 𝑐) ≥ 𝛿 → 𝑡 [𝐵] = 𝑐;
intuitively, it says that if 𝑡 [𝐴] and the value 𝑐 in 𝑡 [𝐵] are strongly
correlated (checked by M𝑐), then we assign the value 𝑐 to 𝑡 [𝐵].
(2) (Data extraction) REE++s: 𝑅(𝑡) ∧ vertex(𝑥,𝐺) ∧ HER(𝑡, 𝑥) ∧
match(𝑡 [𝐵], 𝑥 .𝜌) → 𝑡 [𝐵] = val(𝑥 .𝜌). Intuitively, if 𝑡 matches a
vertex 𝑥 in knowledge graph𝐺 and if 𝑥 reaches vertex 𝑣 via path 𝜌

(encoding the 𝐵-attribute of 𝑡), then 𝑡 [𝐵] takes the value (label) of 𝑣 .
(3) (ML prediction) REE++s of the form 𝑅(𝑡) ∧ null(𝑡 [𝐵]) → 𝑡 [𝐵] =
M𝑑 (𝑡 [𝐴], 𝐵), where 𝑡 [𝐴] is a partial tuple with all validated values
andM𝑑 suggests a value to fill in null 𝑡 [𝐵] (checked by null(𝑡 [𝐵])).
Example 6: REE++s in Example 3 conduct missing value imputation.
Another simple REE++ that derives the area code is as follows:
𝜑12 : Store(𝑡) ∧ 𝑡 .location = “Beijing” → 𝑡 .area_code = “010”. 2

The modelM𝑐 takes a partial tuple 𝑡 [𝐴] and an attribute value
𝑡 [𝐵] of 𝑡 (𝐵 ∉ 𝐴) as input, and returns the confidence of correlation
between 𝑡 [𝐴] and 𝑡 [𝐵] [35]. It is implemented by first pretraining
graph embeddings on knowledge graphs, and then generating the
confidence by combining the classifications from graph embeddings
and language model embeddings. To extendM𝑐 toM𝑑 , which pre-
dicts a value for 𝑡 [𝐵], we reuse the encoders in M𝑐 for computing
embeddings. It is implemented by first retrieving a set of candidate
values for 𝑡 [𝐵] from graph𝐺 based on the partial tuple 𝑡 [𝐴], and
then using a ranking model to get a suggested value for 𝑡 [𝐵].
Interactions. ER, CR, MI and TD interact with each other.
Example 7: Consider the e-commerce database in Tables 1-3.

(1) ER helps CR. Consider a valuation ℎ1 = {(𝑡12, 𝑡13) ↦→ (𝑡, 𝑠)} of
𝜑1 that maps tuples 𝑡12 and 𝑡13 in𝐷3 to the tuple variables 𝑡 and 𝑠 of
𝜑1, respectively. By applying (𝜑1, ℎ1), 𝑝1 and 𝑝2 are identified as the
same person. Given this, we can correct the erroneous address of
𝑝2, by 𝜑13 : Person(𝑡) ∧Person(𝑠) ∧ 𝑡 .pid = 𝑠 .pid∧𝑋 → 𝑡 .home =
𝑠 .home where 𝑋 =

∧
𝐴∈T 𝑡 .𝐴 = 𝑠 .𝐴 and T is a set of designated

attributes such as marital status, salary and the number of kids (not
shown). Here 𝜑13 is learned from the data; intuitively, the home
address of a person is usually unchanged, if the marital status, salary
and the number of kids are unchanged. Applying valuation ℎ13 =

{(𝑡1, 𝑡2) ↦→ (𝑡, 𝑠)} of 𝜑13, we fix 𝑡2 [home] =“5 Beijing West Road”.

(2) CR helps TD. Once the errors in home addresses are fixed, we
can rank the timeliness of values in attribute home for tuples in 𝐷1.
For example, by 𝜑4 and 𝜑5 in Example 2, we deduce 𝑡3 [home]=“12
Beijing Road” as the current home address for Christine.

(3) TD helps MI. AnREE++ 𝜑14 : Person(𝑡 ′)∧Person(𝑡)∧Person(𝑠)

∧𝑡 ′ .pid = 𝑡 .pid∧𝑡 .spouse = 𝑠 .pid∧𝑡 ′ ⪯home 𝑡 → 𝑠 .home = 𝑡 .home
helps us fill in the home address of person 𝑠 by a more recent
address of his/her spouse. By instantiating the tuple variables in
𝜑14 with tuples 𝑡2, 𝑡3 and 𝑡5 in Table 1, respectively, we can impute
the missing address for 𝑝4 of George, since George and Christine
are married and their home address should be the same.

(4) MI helps ER. After knowing the home address of 𝑝4 is “12 Bei-
jing Road” by (𝜑14, ℎ14), we can now apply another REE++ 𝜑15 :
Person(𝑡) ∧ Person(𝑠) ∧ 𝑡 .LN = 𝑠 .LN ∧ 𝑡 .FN = 𝑠 .FN ∧ 𝑡 .home
= 𝑠 .home → 𝑡 .pid = 𝑠 .pid, with valuation ℎ15 = {(𝑡4, 𝑡5) ↦→ (𝑡, 𝑠)}
to identify 𝑝3 and 𝑝4 since they have the same name and address. 2

Resolving conflicts. Rock resolves conflicts as follows.
(1) (ER or CR) When conflicting entity IDs or attribute values are de-

duced, Rock presents the conflicts to the users for correction, to-
gether with the rules and ground truth that identify the conflicts.

(2) (TD)When conflicting temporal orders are deduced, i.e., 𝑡1 ⪯𝐴 𝑡2
and 𝑡2 ⪯𝐴 𝑡1, but 𝑡2 ≺𝐴 𝑡1 or 𝑡1 ≺𝐴 𝑡2, we resolve the conflict by
extending the binary classifier Mrank. Specifically, we extend
Mrank (𝑡1, 𝑡2, ⊗𝐴) to output a confidence score from 0 to 1,
indicating how likely 𝑡1⊗𝐴 𝑡2 holds, where ⊗𝐴 is ≺𝐴 or ⪯𝐴 . Then
we compute two confidence scores for 𝑡1 ⪯𝐴 𝑡2 and 𝑡2 ⪯𝐴 𝑡1,
respectively, and the one with a higher confidence is retained.

(3) (MI) If multiple values are deduced for an attribute value 𝑡 [𝐵], we
can adoptM𝑐 to decide the suitable value. More specifically, we
retrieve a set Cand of candidate values to be {𝑐𝑖 | ∃𝜑 ∈ Σ : 𝑋 →
𝑡 [𝐵] = 𝑐𝑖 s.t. 𝑋 is validated}. We assign 𝑐∗ = arg max𝑐∈Cand
M𝑐 (𝑡 [𝐴], 𝑐) to 𝑡 [𝐵], where 𝑡 [𝐴] consists of all validated values.

User inspection is optional for (2) and (3). One can verify that the
chase extended with this learning-based conflict resolution remains
Church-Rosser [35], and the fixes are certain if the rules and ground
truth are correct and if the ML models in REE++s are accurate.

5 IMPLEMENTATION
This section details the implementation of Rock, for its data storage,
scalability, modules, optimization (Sections 5.1–5.4, respectively).

5.1 Data Storage and Management
For efficiency and flexibility, Rock built Crystal, a distributed file
system to support internet-scale dynamic load across nodes.
Data storage. Crystal develops a consistent hash ring to assign
data objects and computing nodes in a cluster to positions in a
virtual ring structure. It aims to minimize the number of remapped
keys when the nodes are updated in the cluster. A standard hashing
functionCRC-32 [59] is used to encode the IP addresses for hashing
the nodes; and data objects are hashed by a self-defined function
based on spectral clustering. The mapping between hash codes and
nodes are registered in ETCD, a distributed key-value store.

To support data-partitioned parallelism, data objects are par-
titioned and stored distributedly over a cluster in Crystal. To ef-
ficiently fetch objects across nodes, Crystal develops a two-level
addressing model. The first-level metadata always resides in the
memory of a cluster after the system starts so that each node main-
tains the global meta information and knows where to fetch data. If
a node needs data from the other nodes, it looks up the addressing
model and sends messages to the corresponding nodes. Data at

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Xianchun Bao et al.

each node is partitioned into blocks, stored as a linked list.

Data management. Crystal distributedly stores raw data, meta-
data,REE++s, ground truth andML library. It also stores intermediate
results produced during rule discovery and rule execution.
Raw data and ground truth management. Crystal loads raw data
and correlated ground truth after ETL. Then it pre-processes the
data as follows. (1) It adopts built-in rules and regular expressions
to address typos and formatting issues. (2) It transforms attribute
values to unique ids, and builds (a) a row-oriented copy for the
original data, and (b) a column-oriented copy such that similar
values are gathered together, via a pretrained built-in model.
Metadata management. Besides the schemas of tables, Crystal also
maintains (1) column distribution, the distribution of each cate-
gorical and numerical attributes; (2) attribute summary, a set of
signatures for textual attributes, and (3) external knowledge, to link
suitable ML models and vertices in knowledge graphs to attributes.
ML library and REE++s management.Crystalmaintains various pre-
trained models for different tasks and domains. Note that REE++s
may embed any existing ML model that returns a Boolean value as
predicates. The models are trained by, e.g., data augmentation [67],
weak supervision [74], active learning [56] and noisy label han-
dling [81]. In particular, we trained i.e., the ranking modelMrank
for TD and the correlation models M𝑐 andM𝑑 for MI.

Rock supports backend training forMLmodels based on feedback
from daily work at idle time, to continuously improve the models.

5.2 Scalability
To scale with large data, Rock develops three strategies below.
Load balancing strategy. In rule discovery and error detec-
tion/correction [36, 41], each work unit is specified as 𝑇 = (𝜑, 𝐷𝑇),
where 𝜑 is a (partial) REE++ and 𝐷𝑇 is a data partition (see be-
low). Statistical information (e.g., support and confidence), detected
errors or fixes are returned after 𝑇 is completed. To ensure load
balancing, Rock adopts three simple yet effective strategies:
(1) Data partition: Crystal partitions data into blocks; a work unit

may involve multiple blocks. The smaller the blocks, the more
units to handle. A good balance would benefit load balancing.

(2) Cost estimation: During work unit generation, Rock estimates
the cost of each work unit using the metadata stored in Crystal.

(3) Work unit re-assignment: To scale well with large data, Rock
adopts a non-centralized structure under the consistent hash;
all nodes in a cluster play the same roles. Each node has its own
computing engine and work manager. After all work units are
generated, each𝑇 = (𝜑, 𝐷𝑇) is distributed to a node based on the
hash of𝐷𝑇 . All nodes in the cluster synchronize their status with
each other in fixed periods. When a node finishes its assigned
work units, it evokes the work manager to fetch work units from
other nodes. In this way, Rock achieves load balancing and high
scalability; no node is idle unless all work units are finished.

Sampling and top-𝑘 strategies. The complexity of rule discovery
is inherently exponential. To handle large data, Rock implements
the sampling and top-𝑘 strategies of [36, 37] to discover top-𝑘
REE++s in the samples with the following modifications. (1) Rock
samples data with an accuracy guarantee during the discovery pro-

Figure 3: Rule discovery module

cess if the estimated cost of REE++ deduction is large. (2) Rock needs
users to input their prior knowledge for the top-𝑘 discovery, e.g.,
labels of rules, different applications, and so on. Moreover, Rock (op-
tionally) uses the data coverage as the diversification metric and re-
turns the top-𝑘 diversified REE++s. The connection between support
and confidence of the rules on samples and their counterparts on the
entire dataset is established [36]. Note that discovery with sampling
and top-𝑘 strategies still returns REE++s that are interpretable.
Prior knowledge learning. Rock supports an interactive pro-
cess for users to label the usefulness of REE++s and select target
predicates for their application, such that only top-𝑘 useful REE++s
satisfying users’ needs are discovered. After a handful of rules are
labeled, Rock takes them as training instances, and trains a scoring
mode to learn the preferences of users. The model accelerates the
rule discovery process. Rock also supports an anytime algorithm
to continually return the next top-𝑘 results. It iteratively gathers
feedback from the users and incrementally trains the model [37].

5.3 Modules
Rock implements the three major modules of Section 3 as follows.

Rule discovery. The module is invoked by a front-end request. As
shown in Figure 3, Rock supports a user interface and allows users
to confirm the configuration parameters. After the confirmation,
a workflow manager is triggered to control (a) data processing, to
extract sample data and recover prior intermediate results (if any);
(b) predicates, to construct predicates and corresponding auxiliary
structures; (c) ML predicates, to compute ML predictions; (d) knowl-
edge learning, to learn prior knowledge and preference from users;
(e) rule discovery engine, to mine/learn REE++s in the data; and (f)
result management, to check and sort discovered REE++s based on
a trained criteria; it also stores intermediate results.

Error detection. This module supports two modes, batch and in-
cremental. For data-partitioned parallelism, we extended the Hyper-
Cube algorithm [41] to divide data into virtual blocks and generate
work units for each block. Thework units are distributed via the con-
sistent hashing; idle nodes fetch work units in real-time from other
nodes. The process is controlled by the work manager at each node.

Error correction. This module uniformly conducts ER, CR TD and
MI in parallel, by chasing the data with a set Σ of REE++s and a collec-
tion of ground truth. It also extends the HyperCube algorithm [41]
to divide data into multiple virtual blocks and generate work units
for each block. To support ML modelsM(𝑡 [𝐴], 𝑠 [𝐵]), Locality Sen-
sitive Hashing (LSH) is used to generate hash codes [27], such that

Rock: Cleaning Data by Embedding ML in Logic Rules SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

𝐴 and 𝐵 are transformed to new attributes. IfM(𝑡 [𝐴], 𝑠 [𝐵]) = true,
then LSH(𝑡] [𝐴]) = LSH(𝑠 [𝐵]) with high probability. To support
MI, attributes of vertices in knowledge bases are extracted as keys
and treated as new attributes to satisfy match(·, ·) in REE++s. Hy-
perCube is built by incorporating these new attributes.

Rock evenly distributes the work units to computing nodes in
a cluster. Each node executes the assigned work units one by one,
and fetches data from other nodes when needed. When a node is
idle, a work manager transfers work units from other nodes to it
for load balancing. To speed up the chase, each node stores partial
valuations in its memory and periodically monitors whether fixes
generated by other nodes can be used to resume the executions of
these partial valuations. If the partial valuations are too large to fit
into the memory of a node, Crystal stores them in the disk locally.
The process continues until the cluster generates no more fixes.

Local executor. A work unit 𝑇 = (𝜑, 𝐷𝑇) is executed locally at each
node. A query optimizer decides the execution order of predicates in
the precondition of 𝜑 . Then the local executor maintains partial val-
uations of 𝜑 . If a valuation is complete, the deduced result is saved.

5.4 Optimization
Rock develops strategies to improve efficiency and effectiveness.
Polynomial expressions.Rock identifies arithmetical correlations
among numerical attributes as follows. (1) A tree-based model,
XGBoost, ranks the importance of numerical attributes via self-
supervised learning, and prunes irrelevant features (attributes). (2)
Feeding the selected features and labels to a predefined polynomial
expression with LASSO regularization, it learns a weight for each
feature; unimportant features tend to have zero weights.

Optimization for prior knowledge learning. Asking users to
rank REE++s is feasible for data quality experts (who have often
already accumulated some rules during their years of practice),
but it might be hard for novice users. To make it user friendly,
Rock designs a user interaction workflow. After a set of REE++s is
discovered, Rock picks a small sample dataset as testing data and
detects errors in it. Users are invited to confirm whether the errors
are unknown true positives. Rock then collects the user feedback,
and incrementally trains its ML model (Section 5.2) to rank REE++s.

Moreover, given a target predicate, Rock adopts an unsupervised
ML model based on FDX [95] to prune predicate candidates that
are not correlated to the target, to speed up rule discovery.

ML predication. It is costly to conduct ML inference (predictions)
at runtime during rule discovery. To rectify this, Rock pre-computes
the results in advance once the ML predicates are ready. Moreover,
given M(𝑡 [𝐴], 𝑠 [𝐵]), Rock adopts the filter-and-verify paradigm
such that (a) a blocking algorithm is first evoked to retrieve a candi-
date set of potentially matching tuple ID pairs, and then (b) it finds
the true matching pairs in the candidate set forM(𝑡 [𝐴], 𝑠 [𝐵]).
Optimization for rule discovery. Rock continually accumulates
ground truth from (a) historical repairs of previous data cleaning
tasks and (b) manually labeled data of users, so that the rule discov-
ery module could discover rules on cleaner data. It also embeds vari-
ous learning-based strategies in the rule discovery engine, including
data augmentation, feature generation, and feature enrichment so
that the discovered REE++s are more accurate and robust.

6 APPLICATION AND EVALUATION
This section showcases real-world applications of Rock (Bank, Lo-
gistics and Sales) for rule discovery (RD), error detection (ED) and
error correction (EC), and evaluates its accuracy, efficiency and
scalability. More details can be found from the Web page [6].

Baselines. Rock was implemented in Golang. We compared Rock
with the following baselines: (1) ES, a rule discovery system that
uses the idea of evidence set [72] to discover REE++s in parallel in
a purely mining manner; (2) T5s [20], a state-of-the-art ML model
based on the pre-trained language model; (3) SparkSQL [14], a data
processing module in Apache Spark; (4) Presto [80], a fast and re-
liable SQL engine for data analytics and the Open lakehouse; (5)
RB [65], a holistic data cleaning system that adopts the feature en-
gineering and learns ML models for error detection and correction.
No baselines are designed to support all modules (RD, ED and EC),
e.g., SparkSQL and Presto do not discover rules/SQL themselves.
Thus we only compared a baseline whenever it is feasible.

We also compared Rock with its three variants: (1) RocknoML
that is Rock without ML predicates; (2) Rockseq that iteratively
executes ER, CR, MI and TD one by one until no more changes, and
(3) RocknoC that sequentially conducts ER, CR, MI and TD once.

Real-world applications.We tested three real-life applications.

Bank. Nowadays dirty data is one of the top challenges confronted
by banks for risk management. A bank needs high-quality data to
understand their market and customers, and thus employs Rock.
We evaluated a private bank data with 11 relational tables with 1.5
billion tuples and 133 attributes, and report the following four tasks:
(a) CNC that cleans names of records in Bank; (b) CIC for com-
pany information; (c) TPA that detects and corrects total payment
amounts, and (d) ESClean for cleaning all the errors above.

Logistics. A top-tier logistics company has a large volume of logis-
tics data from various domains, e.g., addresses from all over the
world, user profiles and order information. However, the poor data
quality hampers the value of its data. Rock enhances its data quality
to improve its downstream applications. Here we tested one com-
mercial dataset with 1 table and 16 millions of tuples. Four tasks
were evaluated: (a) RS for the street information of recipients, (b)
RR for cleaning the residential area of recipients, (c) SN that cleans
seller names, and (d) RClean for cleaning all the errors above.

Sales. ERP systems need data quality systems to regulate the consis-
tency of sales data.We tested a private commercial dataset of an ERP
system with 13 tables, 0.62 billions tuples and 117 attributes with
four tasks: (a) CIN that cleans customer information; (b) CCN for
company names; (c) TPWT that detects/corrects prices of commodi-
ties without tax, and (d) SClean for cleaning all the errors above.

All the tests were conducted on a Kubernetes cluster with 21
virtual nodes, where each node was configured with a 32-core
Intel(R) Platinum CPUs at 2.1GHz with 256GB memory. The nodes
were connected with a network at 10Gbps. All the experiments
were repeated three times and the average is reported here.

Exp-1. Rule discovery (RD).We evaluated the efficiency of rule
discovery vs. RocknoML, ES, T5s and RB. We report the overall time
of ES and the training time of T5s and RB for a fair comparison.

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Xianchun Bao et al.

Rock
RocknoML

T5s

SparkSQL
Presto
RB

Rock
RocknoML

Rockseq
RocknoC

ES
T5s

SparkSQL
Presto

RB

CNC CIC TPA ESClean
0

100

101

102

103

R
un

ni
ng

Ti
m

e
(m

in
)

(a) Bank: Rule discovery (Time)

RS RR SN RClean
0

100

101

102

103

R
un

ni
ng

Ti
m

e
(m

in
)

(b) Logistics: Rule discovery (Time)

CIN CCN TPWT SClean
0

100

101

102

103

R
un

ni
ng

Ti
m

e
(m

in
)

(c) Sales: Rule discovery (Time)

CNC CIC TPA ESClean
0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

(d) Bank: Error detection (F1)

RS RR SN RClean
0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

(e) Logistics: Error detection (F1)

CIN CCN TPWT SClean
0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

(f) Sales: Error detection (F1)

Bank Logistics Sales

101

102

103

R
un

ni
ng

Ti
m

e
(m

in
)

(g) Error detection (Time)

4 8 12 16 20

2

4

6

8

10

12

R
un

ni
ng

Ti
m

e
(m

in
)

(h) Logistics-ED: Varying 𝑛 (Time)

Bank Logistics Sales
0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

(i) Error correction (F1)

ER CR MI TD
0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

(j) Sales-EC: Varying tasks (F1)

Bank Logistics Sales

101

102

103

R
un

ni
ng

Ti
m

e
(m

in
)

(k) Error correction (Time)

4 8 12 16 20

5.0

7.5

10.0

12.5

15.0

R
un

ni
ng

Ti
m

e
(m

in
)

(l) Logistics-EC: Varying 𝑛 (Time)
Figure 4: Performance evaluation

The effectiveness of the mined REE++s will be shown later.
We set the support (resp. confidence) threshold as 1e-8 (resp.

0.9) in Rock, and adopted pre-trained ML predicates in our ML
pool, e.g., an address normalization model Maddr based on Bert-
CRF, and a commodity SKU identification model MSKU. We set
Rock to discover all relevant REE++s instead of top-𝑘 . We set the
sampling ratio 𝑟 = 10% when the estimated discovery costs are
large (Section 5). We extracted 10% tuples from each dataset for
training and used the remaining for testing. Note that RocknoML
and ES adopted the same configuration as Rock, and T5s and RB
were fine-tuned based on the validation data.

As shown in Figures 4(a)-4(c), Rock consistently outperforms the
competitors (except RocknoML) in efficiency. ES, T5s and RB cannot
finish rule discovery or model training within one day because (a)
ES does not have effective pruning strategies; (b) T5s has to tune
millions of parameters, and (c) RB needs costly feature engineering.
In contrast, Rock is fast, e.g., it takes 25.2 minutes on average. Rock
accelerates the discovery process by pruning a large amount of
search space and verifying REE++s in small sample data when the
discovery cost is large. RocknoML is faster than Rock because it
does not handle ML predicates; however, its accuracy degrades (see
Figure 4(d)-4(f)). Rock returns 388, 47 and 167 REE++s for the three
applications, respectively. The rules confirmed by the users were
employed for error detection and error correction.

Exp-2. Error detection (ED). To evaluate the accuracy, following
[65], we detected errors and manually checked 10,000 tuples for the
correctness. We report the F-Measure = 2 × recall×precision

recall+precision , where

precision (resp. recall) is the ratio of correctly detected errors to all
detected errors (resp. to all errors). Rock, RocknoML and ES identify
errors using mined REE++s, while T5s (resp. RB) uses the generative
model (resp. feature engineering and the downstream random forest
model) to predict whether values are erroneous. Since ES, T5s and
RB cannot scale to large datasets, we sampled a small amount of
data as the training set so that they could finish training in one day.

Accuracy. As reported in Figure 4(d)-4(f), Rock outperforms all
baselines, e.g., the average F-Measure of Rock is 60%, 25.8% and
48.9% higher than ES, T5s and RB, respectively. In particular, when
there are many numerical attributes, e.g., Sales, T5s does not do well,
e.g., its F-Measure is 0.52, while it is 0.96 for Rock. This verifies that
REE++s are powerful enough to fit the needs of various applications.
ES dost not perform well because it is a mining algorithm that
mainly focuses on the precision and does not optimize the recall.

By embedding well-trained ML models as predicates, Rock is
more accurate than RocknoML, e.g., up to 46.3% for TPWT. ML mod-
els could extract relevant information for REE++s, e.g., an address
normalization model extracts various associated features including
district, city and province from the address attribute of Sales so that
Rock discovers three more valuable REE++s than RocknoML. This
verifies the need for unifying ML and logic deduction.

Efficiency. We also evaluated the efficiency of Rock, RocknoML, T5s,
RB, SparkSQL and Presto for error detection. For a fair compari-
son, we transformed the learned REE++s to SQL and fed them into
SparkSQL and Presto, whereML predicates in REE++s are re-written
as UDFs and embedded in SQL. As shown in Figure 4(g), Rock out-

Rock: Cleaning Data by Embedding ML in Logic Rules SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

performs all baselines (except RocknoML) over all applications. All
baselines, e.g., SparkSQL and Presto, cannot finish the execution in
one day, since they support no designated strategy for accelerating
ML models. Although REE++s embed ML models as predicates, Rock
adopts a blocking strategy (Section 5) and hence, its ML compu-
tation does not substantially increase the cost. Moreover, Rock is
faster than the existing SQL engines, by extending the HyperCube
[41] and adopting strategies to avoid load imbalance.

Parallel scalability. In Figure 4(h) we varied the number 𝑛 of work-
ers used. One can see that Rock is 3.36× faster when 𝑛 is changed
from 4 to 20, verifying that the error detection of Rock is parallelly
scalable, by adding more computing nodes when needed.

Exp-3. Error Correction (EC). In the same setting as Exp-2, we
tested Rock with mined REE++s for correcting the detected errors in
each dataset. It starts with 10,000 tuples that weremanually selected,
checked and treated as initial ground truth for Bank, Logistics and
Sales. During the chase, an REE++ is applied only if its precondition
is validated by the ground truth (recall this from Section 4).

Accuracy. As shown in Figure 4(i), Rock outperforms ES, T5s and RB
by 53.4%, 90.9% and 47.3% in F-Measure, respectively. This verifies
that chasing with REE++s and accumulated ground truths in Rock
makes a promising approach for correction. In particular, T5s (resp.
RB) is not effective for numerical (textual) values, e.g., with 0.10
(resp. 0.52) F-Measure for such attributes, in contrast to 0.96 (resp.
0.88) for Rock. This verifies the advantages of Rock against ML and
holistic approaches. We did not compare with Presto and SparkSQL
here since they use the same REE++s discovered by Rock.

Moreover, we find the following in an ablation study.
(1) ML predicates. Rock is more accurate than RocknoML in the three
applications, e.g.,Maddr extracts the information of street, city and
province from a single address, andMSKU classifies a commodity
to a suitable category. Moreover, Rock gives explanation for certain
MLmodels that are treated as consequences ofREE++s. These further
justify the need for unifying ML and logic rules in Rock.

(2) Interaction. Rock has much higher F-Measure than RocknoC, e.g.,
88.5% vs. 23.7% on average. This verifies that supporting interac-
tions among ER, CR, MI and TD indeed helps each other to fix more
errors and thus improves the overall data quality, by conducting ER,
CR, MI and TD in the same process. Rock has the same F-Measure
as Rockseq because both adopt the chasing procedure.

In addition, we evaluated each of ER, CR, MI and TD. As shown
in Figure 4(j), Rock consistently beats all baselines for all tasks,
e.g., 44.7% and 58.8% more accurate than RocknoC and T5s for
ER, respectively. That is, Rock improves the accuracy of each
individual task. Note that TD of ES, TD of T5s, TD and ER of RB
are not shown because they do not support these operations.

Efficiency. We tested Rock, RocknoML, RocknoC, Rockseq, RB, T5s,
Presto and SparkSQL in efficiency. To simulate the chase of Rock,
we iteratively executed SQL in SparkSQL and Presto, and ran ML
inference of T5s and RB until no more fixes can be generated.

As shown in Figure 4(k), Rock is the fastest (except RocknoMLand
RocknoC), e.g., it is at least 33× faster than SparkSQL and Presto,
partially due to its partial valuation, blocking techniques for ML
predicates and load balancing. While T5s only scans the datasets

once, its transformer uses a large number of parameters and thus,
is costly in inference. RB is relatively slow, and cannot finish error
correction in one day, since its feature generation is costly.

Note thatRocknoC is faster thanRock andRockseq sinceRocknoC
only executes ER, CR, MI and TD once while both Rock and Rockseq
run until the chase terminates. Also observe that Rock is faster than
Rockseq, e.g., the average runtime of Rock and Rockseq is 29 and 32
minutes, respectively. This is because Rock can select any suitable
REE++ to execute in each iteration regardless of ER, CR, MI and TD,
while Rockseq blindly tries each REE++ of the four tasks one by one.
This verifies that conducting the four tasks in the same process is
no more costly than sequential execution (Section 4.2).

Scalability. We also varied the number 𝑛 of workers in Figure 4(l).
Rock is parallelly scalable; it is 3.12× faster when 𝑛 is from 4 to 20.

Exp-4. Real-life evaluation. Below are what clients reported,
about how Rock improved the performance of their applications.

Bank. Rock cleaned the dataset of a top-tier commercial bank. To
effectively improve the data quality, domain experts injected their
business knowledge into Rock, and Rock iteratively cleaned the
data. In each round, Rock executed the rule discovery module to
discover a set of rules from the (dirty) data. These rules were fed
to the error detection module. The detected error were returned to
the domain experts, who were invited to label whether (selected)
errors are true positives. The labeled data was added to ground
truth, to refine rule learning. When a small amount ground truth
was accumulated, Rock evoked the error correction module to fix
the errors. The iteration ended when no more fixes were generated.

According to our bank client, Rock improves the F-Measure of
their data cleaning system on a labeled dataset from 80.1% to 97.7%.
Rock also reduces manual efforts of customer confirmations by 8×.
Logistics. A top-tier logistics company wants schema mapping to
link correlated attributes across relational tables. To ensure accurate
schemamapping, they employed Rock to clean their data first. Their
data is fairly consistent, but is incomplete (with a large number of
null values). Hence Rock first discovered and employed REE++s to
impute missing values via the chase. Then it evoked the predicate
construction component in the rule discovery module to find pairs
of correlated attributes. Since there are a large number of tables
(20K+), Rock triggered a blocking step such that feature vectors of
attributes were generated and only attributes with similar features
were kept for further verification. As reported by our client, the F-
Measure of Rock is above 85%, much higher than the other methods.

This shows how Rock was used for a designated task MI.
Data cleaning in e-commerce. We show how to improve the accu-
racy of recommendation from a data cleaning perspective.

The company adopted a recommendation model deepFM(𝑥,𝑦),
where 𝑥 is in aUser table and𝑦 is in an Item table. If deepFM(𝑥,𝑦)
predicts true, it recommends 𝑦 to 𝑥 [19, 98]. Typically, additional
features are extracted for 𝑥 and𝑦 from external sources crawled and
accumulated (e.g., external user data in UserExt and item data in
ItemExt), to improve the accuracy of deepFM(𝑥,𝑦). The external
tables UserExt and ItemExt are often quite dirty and lack labeled
entities for ER, e.g., there are inconsistencies between product cat-
egories and names. To rectify these, Rock adopts a bootstrapping

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Xianchun Bao et al.

strategy [55], such that it iteratively executes rule discovery and ac-
cumulates clean data until no more rules can be discovered. Below
are a few sample REE++s that Rock has mined and applied.

(1) (ER) 𝜑ER : Item(𝑡) ∧ ItemExt(𝑠) ∧ 𝑡 .Cat = 𝑠 .Cat ∧MER (𝑡 [𝐴],
𝑠 [𝐵]) → 𝑡 .id = 𝑠 .id, where 𝐴 (resp. 𝐵) are all attributes of 𝑡 (resp. 𝑠)
andMER is an ER model that identifies entities from the external
source. This REE++ identifies two items across two tables if they
have the same category and the model predicts them as a match.

(2) (CR) 𝜑CR : ItemExt(𝑡) ∧ 𝑡 .name = “IPhone14” → 𝑡 .year =

“2022”, assuring that the release year of “IPhone14” is “2022”.

(3) (TD) 𝜑TD : User(𝑡) ∧ User(𝑠) ∧ Mrank (𝑡, 𝑠, ⪯latestProduct) →
𝑡 ⪯latestProduct 𝑠 , which temporally ranks the latest used products.

(4) (MI) 𝜑MI : User(𝑡) ∧ UserExt(𝑠) ∧ MER (𝑡 [id], 𝑠 [id]) →
𝑡 .latestProduct = 𝑠 .product. This rule imputes the missing product
used by user 𝑡 , by referencing the value of tuple 𝑠 in the external
source, if 𝑡 and 𝑠 are identified via the ER modelMER above.

Then Rock evokes the error correction module to conduct the
chase for ER, CR, MI, and TD. Taking a user 𝑡 = (name = John,
latestProduct = null, boughtYear = 2021, . . .) and an item 𝑠 =

(name = IPhone14, cat = mobile, year = 2002, . . .) as an example,
deepFM may not accurately decide whether user 𝑡 will buy item 𝑠 ,
due to the lack of information (e.g., 𝑡 .latestProduct is null) and the
erroneous values (e.g., 𝑠 .year is wrong). In contrast, by chasing the
data with the REE++s above, Rock can fix the errors and impute the
missing values, e.g., 𝑡 .latestProduct is filled by “IPhone13” via 𝜑MI
and 𝑠 .year is corrected to be “2022” via𝜑CR. Then it is reasonable to
recommend 𝑠 to 𝑡 since the latest product bought by 𝑡 is “IPhone13”,
which is an earlier series of 𝑠 , and this user-item pair (𝑡, 𝑠) can serve
as a new positive example for (incrementally) training deepFM.

Rock can also employ an REE++ to directly enrich deepFM.
(5) (Enrich) 𝜑Enrich : User(𝑡) ∧ Item(𝑠) ∧ deepFM(𝑡, 𝑠) < 𝛿 ∧𝑋1 →
𝑝0, where𝑋1 adds logic conditions (e.g., 𝑡 recently receives a coupon
for 𝑠), and 𝑝0 is 𝑡 .recommendedItem = 𝑠 .id (i.e., we recommend 𝑠
to 𝑡). That is, although deepFM(𝑡, 𝑠) predicts that user 𝑡 may not
like item 𝑠 (with confidence below threshold 𝛿), if 𝑋1 holds, then
we override the prediction of deepFM and recommend 𝑠 to 𝑡 .

Summary.We find the following. (1) In real-life applications, Rock
outperforms the state-of-the-art systems for rule discovery, error
detection and correction. It is 25.8% (resp. 47.3%) more accurate than
the best baseline on average for error detection (resp. correction),
and is up to 374× (resp. 157×) faster. (2) Rock performs the best on
all ER, CR, TD and MI, e.g., its F-measure on CR and ER is as high
as 0.965 and 0.828, respectively. (3) By embedding ML predicates,
Rock improves the F-Measure by 20.5% on average, up to 59.2%. (4)
Rock could find 388, 47 and 167 high-quality REE++s for the three
applications, respectively. (5) As evaluated by our clients, Rock is
accurate, e.g., 85% F-Measure by our Logistics client.

7 RELATEDWORK
Systems. We categorize systems related to Rock as follows.
ER+CR. In industry, data management products offer integration
solutions, e.g., Talend [5], AmazonGlue [2], Informatica [4] and
Ataccama [1] integrate data from different sources. There have also
been ER systems from academy, e.g., DADER [85], JedAI [70] and

Magellan [58] that adopt rules and MLmodels to match entities. Be-
sides, Talend [5], Informatica [4] and Ataccama [1] provide CR so-
lutions. Data cleaning systems from academy, e.g., BigDansing [57],
CoClean [69], Horizon [77], NADEEF [26], CODED [90] and
SCODED [91], detect conflicts and repair data via logical/statistical
methods. AlphaClean [61] tunes hyperparameter for cleaning.

TD. Only a few systems support temporal deduction [7], and tempo-
ral data management [64, 94]. In particular, Tamr [7] adopts rules
and patterns to identify the best records of an entity.

MI. Informatica [4], Ataccama [1] and Tamr [7] provide data
enrichment solutions. Saga [53] is a serving platform for knowl-
edge enrichment in various applications. ActiveDeeper [97] and
KGLac [49] from academy inject external knowledge to enrich data.

Different from the prior systems, Rock (1) provides a uniform
framework for logic rules and ML with REE++s, to take advantage of
both and provide logic interpretation under certain conditions; (2)
supports ER, CR, TD and MI in the same process, (3) warrants the
corrections to errors as logical consequences of REE++s and accumu-
lated ground truth when the embedded ML models are accurate, (4)
supports the parallel scalability to scale with large datasets in princi-
ple, (5) learns users’ prior knowledge and discovers rules under both
subjective and objective measures, and (6) enhances the ability for
data cleaning across multiple relational tables. In particular, (7) for
TD, Rock employs a creator-critic framework to deduce currency.
(8) For MI, it integrates logic, ML prediction and data extraction
from knowledge graphs for data enrichment, and it continuously
maintains (resp. trains) the knowledge graphs (resp. ML models).

Machine learning. Various ML models have been employed for
data cleaning, e.g., Ditto [63], DeepMatcher [68], DADER [84],
AutoEM [96], ChatGPT based method [71] for ER; HoloClean [76],
HoloDetect [48], Raha [66], RetClean [9] for CR; ranking models
(see [89] for a survey) for TD; and denoising autoencndoer [86],
GAN [92] and attention mechanism [83] for MI.

Rock can embed these models as predicates in REE++s if their
outputs are transformed to Boolean values, e.g., by referencing a
threshold. It supports all ER, CR, TD and MI in a unified process.

8 CONCLUSION
Dirty data remains a clear and present danger to big data analytics.
Rock aims to (a) unify logic deduction and ML, (b) improve the
overall quality by catching and fixing duplicates, conflicts, miss-
ing data and obsolete values in the same process, (c) improve the
accuracy of its fixes to errors, and (d) scale with large datasets.

We plan to extend Rock and support the following: (a) federated
learning across multiple private data sources; (b) more user-friendly
methods to learn from users’ prior knowledge; and (c) effective
algorithms to learn top-k diversified rules, such that on the one
hand, the rules are as close to users’ interest as much as possible,
and on the other hand, they are as diverse to each other as possible.

ACKNOWLEDGMENTS
Dr. Yaoshu Wang is supported by Longhua Science and Technol-
ogy Innovation Bureau 10162A20220720B12AB12. Dr. Min Xie is
supported in part by China NSFC 62202313 and Guangdong Basic
and Applied Basic Research Foundation 2022A1515010120.

Rock: Cleaning Data by Embedding ML in Logic Rules SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

REFERENCES
[1] 2023. Ataccama: Unified Data Management Platform. https://www.ataccama.

com/.
[2] 2023. AWS Glue: Discover, prepare, and integrate all your data at any scale.

https://aws.amazon.com/glue/.
[3] 2023. Data Governance DataArts Studio. https://support.huaweicloud.com/

usermanual-dataartsstudio/dataartsstudio_01_0715.html?version=2.5.50000.
157&platform=win.

[4] 2023. Informatica: Data chaos becomes data clarity. https://www.informatica.
com/.

[5] 2023. Modern data management that drives real value. https://www.talend.com/.
[6] 2023. Rock. http://www.grandhoo.com/en.
[7] 2023. Tamr: Next-Generation Data Mastering & Enrichment. https://www.tamr.

com/.
[8] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.
[9] Mohammad Shahmeer Ahmad, Zan Ahmad Naeem, Mohamed Y. Eltabakh,

Mourad Ouzzani, and Nan Tang. 2023. RetClean: Retrieval-Based Data Cleaning
Using Foundation Models and Data Lakes. CoRR abs/2303.16909 (2023).

[10] João Paulo Aires and Felipe Meneguzzi. 2017. Norm Conflict Identification Using
Deep Learning. In AAMAS Workshops. 194–207.

[11] Arvind Arasu, Michaela Götz, and Raghav Kaushik. 2010. On active learning of
record matching packages. In SIGMOD. 783–794.

[12] Arvind Arasu, Christopher Ré, and Dan Suciu. 2009. Large-Scale Deduplication
with Constraints Using Dedupalog. In ICDE. 952–963.

[13] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query
Answers in Inconsistent Databases. In PODS. 68–79.

[14] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD. ACM,
1383–1394.

[15] Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. 2013. Data
Cleaning and Query Answering with Matching Dependencies and Matching
Functions. Theory Comput. Syst. 52, 3 (2013), 441–482.

[16] Indrajit Bhattacharya and Lise Getoor. 2007. Collective entity resolution in
relational data. TKDD (2007).

[17] Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi. 2005. A
Cost-Based Model and Effective Heuristic for Repairing Constraints by Value
Modification. In SIGMOD. ACM, 143–154.

[18] Statistics Canada. 2022. Classification of legal marital status.
https://www23.statcan.gc.ca/imdb/p3VD.pl?Function=getVDn&TVD=61748&
CVD=61748&CLV=0&MLV=1&D=1.

[19] Xu Chen, Yongfeng Zhang, and Zheng Qin. 2019. Dynamic Explainable Recom-
mendation Based on Neural Attentive Models. In AAAI. AAAI Press, 53–60.

[20] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William
Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha
Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping
Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and JasonWei. 2022. Scaling Instruction-
Finetuned Language Models. https://doi.org/10.48550/ARXIV.2210.11416

[21] E. F. Codd. 1979. Extending the Database Relational Model to Capture More
Meaning. TODS 4, 4 (1979), 397–434.

[22] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving
Data Quality: Consistency and Accuracy. In VLDB. 315–326.

[23] Sanjib Das, Paul Suganthan G. C., AnHai Doan, Jeffrey F. Naughton, Ganesh
Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon
Park. 2017. Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching to
Build Cloud Services. In SIGMOD. 1431–1446.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT. 4171–4186.

[25] Mohamad Dolatshah, Mathew Teoh, Jiannan Wang, and Jian Pei. 2018. Cleaning
Crowdsourced Labels Using Oracles For Statistical Classification. PVLDB 12, 4
(2018), 376–389.

[26] Amr Ebaid, Ahmed K. Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani, Jorge-Arnulfo
Quiané-Ruiz, Nan Tang, and Si Yin. 2013. NADEEF: A Generalized Data Cleaning
System. PVLDB (2013).

[27] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity
Resolution. PVLDB 11, 11 (2018), 1454–1467.

[28] Exasol. 2020. Exasol Research Finds 58% of Organizations Make Decisions Based
on Outdated Data.
https://www.exasol.com/news-exasol-research-finds-organizations-make-
decisions-based-on-outdated-data/.

[29] Lihang Fan, Wenfei Fan, Ping Lu, Chao Tian, and Qiang Yin. 2024. Enriching
Recommendation Models with Logic Conditions. Proc. ACM Manag. Data (2024).

[30] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. 2011. Dynamic

constraints for record matching. VLDB J. 20, 4 (2011), 495–520.
[31] Wenfei Fan, Ling Ge, Ruochun Jin, Ping Lu, and Wenyuan Yu. 2022. Linking

Entities across Relations and Graphs. In ICDE. IEEE, 634–647.
[32] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Condi-

tional Functional Dependencies for Capturing Data Inconsistencies. ACM Trans.
Database Syst. 33, 1 (2008), 25:1–25:49.

[33] Wenfei Fan, Floris Geerts, Nan Tang, and Wenyuan Yu. 2014. Conflict resolution
with data currency and consistency. J. Data and Information Quality 5, 1-2 (2014),
6:1–6:37.

[34] Wenfei Fan, Floris Geerts, and Jef Wijsen. 2012. Determining the Currency of
Data. TODS 37, 4 (2012), 25:1–25:46.

[35] Wenfei Fan, Ziyan Han, Weilong Ren, Ding Wang Yaoshu Wang, Min Xie, and
Mengyi Yan. 2024. Splitting Tuples of Mismatched Entities. In SIGMOD. ACM.

[36] Wenfei Fan, Ziyan Han, YaoshuWang, and Min Xie. 2022. Parallel Rule Discovery
from Large Datasets by Sampling. In SIGMOD. ACM, 384–398.

[37] Wenfei Fan, Ziyan Han, Yaoshu Wang, and Min Xie. 2023. Discovering Top-k
Rules using Subjective and Objective Criteria. Proc. ACM Manag. Data 1, 1 (2023),
70:1–70:29.

[38] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. 2010. Towards
Certain Fixes with Editing Rules and Master Data. PVLDB 3, 1 (2010), 173–184.

[39] Wenfei Fan, Ping Lu, and Chao Tian. 2020. Unifying logic rules and machine
learning for entity enhancing. Sci. China Inf. Sci. 63, 7 (2020).

[40] Wenfei Fan, Ping Lu, Chao Tian, and Jingren Zhou. 2019. Deducing Certain Fixes
to Graphs. PVLDB 12, 7 (2019), 752–765.

[41] Wenfei Fan, Chao Tian, YanghaoWang, and Qiang Yin. 2021. Parallel discrepancy
Detection and Incremental Detection. PVLDB 14, 8 (2021), 1351–1364.

[42] Wenfei Fan, Resul Tugay, Yaoshu Wang, Min Xie, and Muhammad Asif Ali. 2023.
Learning and Deducing Temporal Orders. PVLDB 16, 8 (2023), 1944–1957.

[43] I.P. Fellegi and D. Holt. 1976. A Systematic Approach to Automatic Edit and
Imputation. J. of the American Statistical Association 71, 353 (1976), 17–35.

[44] Ivan P. Fellegi and Alan B. Sunter. 1969. A Theory for Record Linkage. J. of the
American Statistical Association 64, 328 (1969), 1183–1210.

[45] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: Metapath
aggregated graph neural network for heterogeneous graph embedding. InWWW.
2331–2341.

[46] Gartner. 2018. How to create a business case for data quality improvement.
https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-
data-quality-improvement/.

[47] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008.
On generating near-optimal tableaux for conditional functional dependencies.
PVLDB 1, 1 (2008), 376–390.

[48] Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. 2019.
HoloDetect: Few-Shot Learning for Error Detection. In SIGMOD. 829–846.

[49] Ahmed Helal, Mossad Helali, Khaled Ammar, and Essam Mansour. 2021. A
Demonstration of KGLac: A Data Discovery and Enrichment Platform for Data
Science. PVLDB 14, 12 (2021), 2675–2678.

[50] Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[51] Rachael A Hughes, Jon Heron, Jonathan AC Sterne, and Kate Tilling. 2019. Ac-
counting for missing data in statistical analyses: multiple imputation is not always
the answer. International journal of epidemiology 48, 4 (2019), 1294–1304.

[52] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE:
An efficient algorithm for discovering functional and approximate dependencies.
The computer journal 42, 2 (1999), 100–111.

[53] Ihab F. Ilyas, Theodoros Rekatsinas, Vishnu Konda, Jeffrey Pound, Xiaoguang Qi,
and Mohamed A. Soliman. 2022. Saga: A Platform for Continuous Construction
and Serving of Knowledge at Scale. In SIGMOD. ACM, 2259–2272.

[54] Robert Isele, Anja Jentzsch, and Christian Bizer. 2010. Silk Server - Adding
missing Links while consuming Linked Data. In COLD, Vol. 665.

[55] Heinrich Jiang andMaya R. Gupta. 2021. Bootstrapping for Batch Active Sampling.
In SIGKDD. Association for Computing Machinery, 3086–3096.

[56] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. 2019.
Low-resource deep entity resolution with transfer and active learning. arXiv
preprint arXiv:1906.08042 (2019).

[57] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani,
Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. 2015. BigDans-
ing: A System for Big Data Cleansing. In SIGMOD. 1215–1230.

[58] Pradap Konda, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan,
Jeffrey R. Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeffrey F. Naughton,
Shishir Prasad, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra. 2016.
Magellan: Toward building entity matching management systems. PVLDB 9, 12
(2016), 1197–1208.

[59] Philip Koopman. 2002. 32-Bit Cyclic Redundancy Codes for Internet Applications.
In 2002 International Conference on Dependable Systems and Networks (DSN). IEEE
Computer Society, 459–472.

[60] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. PVLDB 3, 1 (2010), 484–
493.

https://www.ataccama.com/
https://www.ataccama.com/
https://aws.amazon.com/glue/
https://support.huaweicloud.com/usermanual-dataartsstudio/dataartsstudio_01_0715.html?version=2.5.50000.157&platform=win
https://support.huaweicloud.com/usermanual-dataartsstudio/dataartsstudio_01_0715.html?version=2.5.50000.157&platform=win
https://support.huaweicloud.com/usermanual-dataartsstudio/dataartsstudio_01_0715.html?version=2.5.50000.157&platform=win
https://www.informatica.com/
https://www.informatica.com/
https://www.talend.com/
http://www.grandhoo.com/en
https://www.tamr.com/
https://www.tamr.com/
https://www23.statcan.gc.ca/imdb/p3VD.pl?Function=getVDn&TVD=61748&CVD=61748&CLV=0&MLV=1&D=1
https://www23.statcan.gc.ca/imdb/p3VD.pl?Function=getVDn&TVD=61748&CVD=61748&CLV=0&MLV=1&D=1
https://doi.org/10.48550/ARXIV.2210.11416

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Xianchun Bao et al.

[61] Sanjay Krishnan and Eugene Wu. 2019. AlphaClean: Automatic Generation of
Data Cleaning Pipelines. CoRR abs/1904.11827 (2019).

[62] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A Complexity Theory of
Efficient Parallel Algorithms. Theor. Comput. Sci. 71, 1 (1990), 95–132.

[63] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. PVLDB 14, 1
(2020), 50–60.

[64] Wei Lu, Zhanhao Zhao, Xiaoyu Wang, Haixiang Li, Zhenmiao Zhang, Zhiyu
Shui, Sheng Ye, Anqun Pan, and Xiaoyong Du. 2019. A Lightweight and Efficient
Temporal Database Management System in TDSQL. PVLDB 12, 12 (2019), 2035–
2046.

[65] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error Cor-
rection via a Unified Context Representation and Transfer Learning. PVLDB 13,
11 (2020), 1948–1961.

[66] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Mad-
den, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A
Configuration-Free Error Detection System. In SIGMOD. 865–882.

[67] Zhengjie Miao, Yuliang Li, and XiaolanWang. 2021. Rotom: AMeta-Learned Data
Augmentation Framework for EntityMatching, Data Cleaning, Text Classification,
and Beyond. In SIGMOD. ACM, 1303–1316.

[68] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep Learning for Entity Matching: A Design Space Exploration. In SIGMOD.
19–34.

[69] Mashaal Musleh, Mourad Ouzzani, Nan Tang, and AnHai Doan. 2020. CoClean:
Collaborative Data Cleaning. In SIGMOD. ACM, 2757–2760.

[70] George Papadakis, George Mandilaras, Luca Gagliardelli, Giovanni Simonini, Em-
manouil Thanos, George Giannakopoulos, Sonia Bergamaschi, Themis Palpanas,
and Manolis Koubarakis. 2020. Three-dimensional entity resolution with JedAI.
Information Systems 93 (2020), 101565.

[71] Ralph Peeters and Christian Bizer. 2023. Using ChatGPT for Entity Matching. In
New Trends in Database and Information Systems - ADBIS.

[72] Eduardo H. M. Pena, Eduardo C. de Almeida, and Felix Naumann. 2019. Discovery
of Approximate (and Exact) Denial Constraints. PVLDB 13, 3 (2019), 266–278.

[73] Kun Qian, Lucian Popa, and Prithviraj Sen. 2017. Active Learning for Large-Scale
Entity Resolution. In CIKM. 1379–1388.

[74] Alexander J. Ratner, Braden Hancock, and Christopher Ré. 2019. The Role
of Massively Multi-Task and Weak Supervision in Software 2.0. In CIDR.
www.cidrdb.org.

[75] Thomas C. Redman. 2016. Bad Data Costs the U.S. $3 Trillion Per Year. Harvard
Business Review.
https://hbr.org/2016/09/bad-data-costs-the-u-s-3-trillion-per-year.

[76] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:
Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017), 1190–
1201.

[77] El Kindi Rezig, Mourad Ouzzani, Walid G. Aref, Ahmed K. Elmagarmid, Ahmed R.
Mahmood, and Michael Stonebraker. 2021. Horizon: Scalable Dependency-driven
Data Cleaning. PVLDB 14, 11 (2021), 2546–2554.

[78] Royal Mail. 2018. Dynamic Customer Data in a Digital World: Data Services
Insight Report. https://www.royalmail.com/business/system/files/royal-mail-data-
services-insight-report-2018.pdf.

[79] Fereidoon Sadri and Jeffrey D. Ullman. 1980. The Interaction between Functional

Dependencies and Template Dependencies. In SIGMOD.
[80] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,

Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything. In ICDE. IEEE, 1802–1813.

[81] Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-Gil Lee. 2020. Learning
from Noisy Labels with Deep Neural Networks: A Survey. CoRR abs/2007.08199
(2020).

[82] Katia P. Sycara. 1993. Machine learning for intelligent support of conflict resolu-
tion. Decision Support Systems 10, 2 (1993), 121–136.

[83] Simon Tihon, Muhammad Usama Javaid, Damien Fourure, Nicolas Posocco, and
Thomas Peel. 2021. DAEMA: Denoising Autoencoder with Mask Attention. In
ICANN (Lecture Notes in Computer Science), Vol. 12891. Springer, 229–240.

[84] Jianhong Tu, Ju Fan, Nan Tang, PengWang, Chengliang Chai, Guoliang Li, Ruixue
Fan, and Xiaoyong Du. 2022. Domain Adaptation for Deep Entity Resolution. In
SIGMOD. ACM, 443–457.

[85] Jianhong Tu, Xiaoyue Han, Ju Fan, Nan Tang, Chengliang Chai, Guoliang Li,
and Xiaoyong Du. 2022. DADER: Hands-Off Entity Resolution with Domain
Adaptation. PVLDB 15, 12 (2022), 3666–3669.

[86] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. 2010. Stacked Denoising Autoencoders: Learning Useful
Representations in a Deep Network with a Local Denoising Criterion. J. Mach.
Learn. Res. 11 (2010), 3371–3408.

[87] Larysa Visengeriyeva and Ziawasch Abedjan. 2018. Metadata-driven error detec-
tion. In SSDBM. 1:1–1:12.

[88] Steven Euijong Whang and Hector Garcia-Molina. 2013. Joint entity resolution
on multiple datasets. The VLDB Journal 22, 6 (2013), 773–795.

[89] Jun Xu, Xiangnan He, and Hang Li. 2020. Deep Learning for Matching in Search
and Recommendation. Found. Trends Inf. Retr. 14, 2-3 (2020), 102–288.

[90] Jing Nathan Yan, Oliver Schulte, Jiannan Wang, and Reynold Cheng. 2019. De-
tecting Data Errors with Statistical Constraints. CoRR abs/1902.09711 (2019).

[91] Jing Nathan Yan, Oliver Schulte, Mohan Zhang, Jiannan Wang, and Reynold
Cheng. 2020. SCODED: Statistical Constraint Oriented Data Error Detection. In
SIGMOD.

[92] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. 2018. GAIN: Missing
Data Imputation using Generative Adversarial Nets. In ICML (Proceedings of
Machine Learning Research), Vol. 80. PMLR, 5675–5684.

[93] Dongxiang Zhang, Long Guo, Xiangnan He, Jie Shao, Sai Wu, and Heng Tao Shen.
2018. A Graph-Theoretic Fusion Framework for Unsupervised Entity Resolution.
In ICDE. IEEE, 713–724.

[94] Shiming Zhang, Yin Yang, Wei Fan, Liang Lan, and Mingxuan Yuan. 2014.
OceanRT: real-time analytics over large temporal data. In SIGMOD. ACM, 1099–
1102.

[95] Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A Statistical Per-
spective on Discovering Functional Dependencies in Noisy Data. In SIGMOD.
ACM, 861–876.

[96] Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end Fuzzy Entity-Matching
using Pre-trained Deep Models and Transfer Learning. In WWW. 2413–2424.

[97] Liang Zhao, Qingcan Li, Pei Wang, Jiannan Wang, and Eugene Wu. 2020. Ac-
tiveDeeper: A Model-based Active Data Enrichment System. PVLDB 13, 12 (2020),
2885–2888.

[98] Lixin Zou, Long Xia, Yulong Gu, Xiangyu Zhao, Weidong Liu, Jimmy Xiangji
Huang, and Dawei Yin. 2020. Neural Interactive Collaborative Filtering. In SIGIR.
ACM, 749–758.

	Abstract
	1 Introduction
	2 Extended Entity Enhancing Rules
	2.1 REEs for ER and CR
	2.2 REE++s for Deducing Timeliness
	2.3 REE++s for Imputing Missing Data

	3 System Architecture
	4 A Uniform Process
	4.1 Chasing with REE++s
	4.2 Deduction with the Chase

	5 Implementation
	5.1 Data Storage and Management
	5.2 Scalability
	5.3 Modules
	5.4 Optimization

	6 Application and Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

