
FindYourFavorite: An Interactive System for Finding
the User’s Favorite Tuple in the Database

Min Xie, Tianwen Chen, Raymond Chi-Wing Wong
The Hong Kong University of Science and Technology

mxieaa@cse.ust.hk, tchenaj@connect.ust.hk, raywong@cse.ust.hk

ABSTRACT

When facedwith a database containingmillions of tuples, an
end user might be only interested in �nding his/her favorite
tuple in the database. In this paper, we study how to help an
end user to �nd such a favorite tuple with a few user inter-

actions. In each interaction, a user is presented with a small
number of tuples (which can be arti�cial tuples outside the
database or true tuples inside the database) and s/he is asked
to indicate the tuple s/he favors the most among them.
Di�erent from the previous work which displays arti�cial

tuples to users during the interaction and requires heavy
user interactions, we achieve a stronger result. Speci�cally,
we use a concept, called the utility hyperplane, to model the
user preference and an e�ective pruning strategy to locate
the favorite tuple for a user in the whole database. Based on
these techniques, we developed an interactive system, called
FindYourFavorite, and demonstrate that the system could
identify the favorite tuple for a user with a few user interac-
tions by always displaying true tuples in the database.

ACM Reference Format:

Min Xie, Tianwen Chen, Raymond Chi-Wing Wong. 2019. FindY-

ourFavorite: An Interactive System for Finding the User’s Favorite

Tuple in the Database. In 2019 International Conference on Manage-

ment of Data, June 30-July 5, 2019, Amsterdam, Netherlands. ACM,

New York,NY, USA, 4 pages. https://doi.org/10.1145/3299869.3320215

1 INTRODUCTION

In order to assist the user in �nding the tuple s/he is in-
terested in, a database system provides some operators to
�t the user’s need. Such operators can be applied in vari-
ous domains, including house buying, car purchase and job
search. For example, in a car database where each car tuple

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Abstract-

ing with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior speci�c permission and/or

a fee. Request permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3320215

is described by some attributes, Alice wants to �nd an in-
expensive car with a high horse power, which is as new as
possible (i.e., price, horse power and car age are some crite-
ria that Alice would consider when she buys a car). In the
literature [1, 2], Alice’s preference could be represented by
a monotonic preference function, called a utility function, in
her mind. Based on this function, each car in the database
has a utility and the car with the highest utility is the fa-

vorite car of Alice. Unfortunately, it is hard for most users
to specify their utility functions and even the users them-
selves might not know their utility functions explicitly.
In this paper, we study how user interactions would help

in �nding the favorite tuple for a user in a large database.
Intuitively, instead of asking the user for the exact utility
function directly (which is di�cult for a user to answer), we
ask the user to provide “hints” on what his/her utility func-
tion might look like (which is easier to provide). Based on
the user feedback, we implicitly learn the utility function
and determine the tuple that s/he is interested in. In particu-
lar, we consider the following type of interaction [1], which
is simple and naturally appears in our daily life: when pre-

sented with a short list of tuples, the user is asked to tell his/her

favorite tuple (i.e., the maximum utility tuple) among them.
Tomotivate the problem,we consider a scenario where an

interactive system wants to help Alice to �nd her favorite
car in the market by interactively learning Alice’s prefer-
ence andmaking recommendations. There can be many can-
didate cars in the market (even after �ltering some uninter-
esting cars which do not satisfy the criteria speci�ed by Al-
ice) and thus, Alice might have to trade-o� between di�er-
ent attributes (e.g., Alice might be willing to pay more on
buying a new car than buying an old one). This trade-o� is
often individualistic and might not be known by the system
in a complete way. To recommend cars e�ectively, it can
show Alice around a short list of cars and Alice can indicate
the car she favors the most. The car favored by Alice might
di�er from other non-favorite cars in some ways, which re-
�ects the trade-o� in Alice’s mind. With this information,
the system can �lter out those cars de�nitely uninteresting
to Alice. For those cars where Alice’s preference is still un-
known, another short list of recommendation could bemade.
By this interactive procedure, Alice can be provided with
more and more accurate recommendations and �nally, her

https://doi.org/10.1145/3299869.3320215
https://doi.org/10.1145/3299869.3320215

favorite car could be identi�ed. In this paper, we automate
this interactive process, which has many applications such
as personalized recommendation and self-guided shopping.
Unfortunately, the existing method in [1] cannot address

this problem well, and it has the following major disadvan-
tages: (1) they create arti�cial tuples (i.e., fake tuples not
inside the database) and present those tuples to the user
during the interaction, which, however, is not desirable. For
example, Alice might be shown a fake car during the inter-
action and she is attracted by this car. Alice might be en-
couraged to spendmore time on interacting with the system,
hoping to obtain an even better car at the end. However, if
Alice �nally �nds that the car she favors is fake, Alice can be
disappointed and think that the system is a fraud; (2) they re-
quire a large amount of user interactions in order to identify
the desired favorite tuple for a user, which is not practical.
To address these limitations, we develop an interactive

system called FindYourFavorite, which is powered by our
techniques proposed in [5], and it has the following attrac-
tive features. Firstly, it provides user-friendly interfaces for
users (1) to specify their search constraints, (2) to interact
with the system and (3) to visualize the database state (e.g.,
what are the remaining candidate favorite tuples in the data-
base). Secondly, FindYourFavorite has the desirable guar-
antee that it always displays true tuples during the inter-
action. Thirdly, FindYourFavorite can identify the user’s
favorite tuple with a small amount of interactions and thus,
it is more practical and useful. In this paper, we demonstrate
FindYourFavorite on a used car database and deploy it to
help users to �nd their favorite cars in this database. To sum-
marize, our major contributions are summarized below:

• Wedevelop an interactive system, FindYourFavorite,
for �nding the user’s favorite tuple in a large database.

• FindYourFavorite provides several interactive inter-
faces to users and supports various functionalities.

• We deploy FindYourFavorite on a used car database
for an easy-to-follow system demonstration.

In the following, we introduce the FindYourFavorite

system architecture in Section 2 and demonstrate the sys-
tem in Section 3. Finally, Section 4 concludes this paper.

2 SYSTEM ARCHITECTURE

The input is a set D with n tuples (i.e., |D | = n) in a d-
dimensional space (i.e., each tuple is described byd attributes).
We denote the i-th dimensional value of a tuple p ∈ D

by p[i] where i ∈ [1,d]. Without loss of generality, we as-
sume that a larger value in each dimension is preferable to
all users. If a smaller value is preferable (e.g., price), we can
modify the dimension by subtracting each value from the
maximum value so that it satis�es this assumption.

End

1. The

stopping

condition is

satisfied?

2. Display s

tuples to

the user

3. Update the

information

maintained

based on the

user feedback

Start

NoYes
The user picks

his/her favorite

tuple among

these s tuples

Figure 1: The Interactive System

Same as [1, 5], the user preference can be represented by
an unknown linear utility function, denoted by f , which is
a mapping f : Rd

+
→ R+. A utility function f is linear if

f (p) = u · p where f (p) is the utility of p w.r.t. f and, u is
a d-dimensional non-negative utility vector where u[i]mea-
sures the importance of the i-th dimensional value in the
user preference. In particular, a user is interested in �nding
the tuple in D which maximizes the utility w.r.t. his/her util-
ity vector and the tuple with the maximum utility is the fa-
vorite tuple of this user in the whole database. Without loss

of generality, we assume that
∑d

i=1u[i] = 1 in this paper.

2.1 Architecture Overview

The architecture overview of our interactive system, FindY-
ourFavorite, is shown in Figure 1. Speci�cally, we interact
with a user with an unknown utility vector for rounds. At
each round, we ask the user a question by displaying s tuples.
After the user picks the tuple s/he favors the most among
them, we update the information maintained for learning
the user preference until the user’s favorite tuple is identi-
�ed. In particular, we consider the following components:

(1) (StoppingCondition)When canwe stop interactions?
(2) (Tuple Selection) How to select s tuples to display?
(3) (InformationMaintenance)What types of informa-

tion should we maintain and how to update the infor-
mation based on the user feedback?

In the following, we show how we address each of these
three components in FindYourFavorite one by one.

2.2 Components Description

Information Maintenance. We maintain two data struc-
tures in our solutions: a convex region R in the utility space
which contains the user’s true utility vector u and a candi-
date set C ⊆ D which contains the user’s favorite tuple.

Recall that
∑d

i=1u[i] = 1 and thus, u can be regarded as a

(non-negative) point on a hyperplaneH = {p ∈ Rd |
∑d

i=1 p[i] =

1}. We de�ne the candidate utility range, denoted by R, to
be the convex region on H which contains the user’s true
utility vector u. For example, in Figure 2 where d = 3, R
is the triangular region {u ∈ R3

+
| u[1] + u[2] + u[3] = 1}

before the user provides any information on his/her utility
vector u. Given the candidate utility range R, we de�ne the
candidate set of favorite tuples, denoted byC , to be a subset

of tuples in D such that for each u in R, the favorite tuple of
D w.r.t. u is in C . That is, if p = argmaxq∈D u · q where u is
a vector in R, the tuple p is in C . Intuitively, when the user
answers more questions, we learn more about his/her utility
vector u. Then, R and the corresponding C will be smaller.

Speci�cally, if the user prefersp toq for some tuplesp and
q in a round, we de�ne a utility hyperplane, denoted by hp,q ,
to be the hyperplane passing through the origin O with its
unit normal in the same direction as p − q. The hyperplane
hp,q partitions the space Rd into two halves. The half space
above hp,q is denoted by h+p,q . The following lemma shows
how we can update R to be a smaller region based on hp,q .
Due to the lack of space, the proofs can be found in [5].

Lemma 2.1. GivenR and two tuplesp andq, if a user prefers

p to q, the user’s utility vector u must be in h+p,q ∩ R.

Example 2.2. Consider two tuples p and q in Figure 2. We
draw the hyperplane hp,q passing through the origin with
its unit normal in the same direction as p − q. If the user
prefers p to q (i.e., u · p > u · q), u is in the half space above
hp,q . R is then updated to be h+p,q ∩ R (left sub-triangle).

Utility hyperplanes are very useful. Firstly, according to
the user feedback, we can construct a number of utility hy-
perplanes and use them to update R. Secondly, based on
those utility hyperplanes, we can develop a strategy to prune
non-favorite tuples in C , as shown in the following lemma.

Lemma 2.3. Given R, a tuple q can be pruned from C if

there exists a tuple p in C such that h+q,p ∩ R = �.

Lemma 2.3 tells us that we can safely prune a tuple q if
there is a p in C such that p is preferable to q w.r.t. any u in
R. We use this strategy to maintain C . Speci�cally, when R

is updated, we remove each tuple fromC that can be pruned
by Lemma 2.3 and thus, the remainingC is the candidate fa-
vorite tuple set. This process can be implemented by adapt-
ing the skyline algorithms [3] and we omit the details here.

Stopping Condition. If there is only one tuple p in C , we
conclude that p is the desired favorite tuple according to the
de�nition ofC and stop the interaction immediately.

Tuple Selection.We present two approaches of displaying
tuples in the interactive system: Random and Simplex.
Random.At each round, we randomly select s tuples from

C and display them to the user. Let p be the favorite tuple
picked by the user. For each of the remaining s − 1 tuples,
namely q, we construct a utility hyperplane hp,q , resulting
in s − 1 utility hyperplanes in total, which update R and C .
Simplex. The idea is inspired from the geometric interpre-

tation of the Simplex method for Linear Programming [4].
In geometry, the convex hull of D, denoted by Conv(D),

is the smallest convex set containing D. A tuple p in D is
a vertex of Conv(D) if p < Conv(D/{p}). We maintain the

vertex p ∈ C in Conv(D) with the highest utility displayed
so far and interactively check if there is a neighboring ver-
tex of p in Conv(D) with a higher utility than p by display-
ing p and at most s − 1 neighboring vertices to the user at
each round. Each non-favorite tuple corresponds to a new
utility hyperplane which will then update R and C . In this
approach, the tuple selection is directed by neighboring ver-
tices in Conv(D) since they can strictly improve the utility
of the vertex we maintain, as shown in the lemma below.

Lemma 2.4. Given a utility vector u and a vertex p ∈ C

of Conv(D), either p is the favorite tuple w.r.t. u or, there is a

neighboring vertex of p, whose utility is larger than that of p.

3 SYSTEM DEMONSTRATION

Wedevelop an interactive system called FindYourFavorite
based on the proposed techniques. In this section, we demon-
strate it on a used car database1, but our system could also be
applied onmany other datasets [1, 5] which were not shown
due to the lack of space. Recall that Alice wants an inexpen-
sive used car with a high horse power, which is as new as
possible. We show how FindYourFavorite helps Alice to
identify such a favorite car by asking her a few questions.
The three main interfaces of FindYourFavorite are shown
in Figure 3 and Alice can use them to (1) specify the search
constraints, (2) interact with the system and (3) to visual-
ize the database state. We also shot a video2 to demonstrate
FindYourFavorite under these scenarios. The interested
readers could also �nd our demonstration system online3.

3.1 Constraint Speci�cation

Figure 3(a) shows the constraint speci�cation interface. In
this used car database, each car is described by 4 attributes,
namely price (in USD), year of purchase, power (in PS) and
used kilometers. In general, a lower price and smaller used
kilometers aremore preferablewhile amore recent purchase
and a higher power are more preferable. Before starting the
interaction, Alice can specify some initial constraints on these
attributes (Figure 3(a)). For example, Alice may specify the
price from 1,000 USD to 20,000 USD (i.e., inexpensive cars),
the power from 100PS to 400PS (i.e., high horse power) and
the year of purchase from 2007 to 2017 (i.e., as new as possi-
ble). Since Alice does not have any requirement on the used
kilometers, it is left blank to use the default values. Alice
can also specify the maximum number of cars, denoted by
maxcar , that shewants to retrieve for selection and the tuple
selection mode (i.e., Simplex or Random). Suppose that Alice
sticks to the default setting of maxcar = 1, 000 and uses the
Simplex mode. Then, she can click the “Start” button.

1https://www.kaggle.com/orgesleka/used-cars-database
2https://youtu.be/FjFbNcQYDFM
3https://mxieaa.github.io/FindYourFavorite

https://www.kaggle.com/orgesleka/used-cars-database
https://youtu.be/FjFbNcQYDFM
https://mxieaa.github.io/FindYourFavorite

Figure 2: Utility Space

(a) Constraint Speci�cation (b) Interaction (c) Result

Figure 3: Main Interfaces of FindYourFavorite

After the “Start” button is clicked, FindYourFavorite pro-
cesses the database and prepares the data for interaction in
two steps. Firstly, it retrieves maxcar cars from the database
which satisfy all the search constraints. Secondly, it prepro-
cesses those cars into the initial candidate set C so that C
contains skyline cars only [3]. Speci�cally, a car p is said to
dominate another car q if p is not worse than q on each at-
tribute and p is better than q on at least one attribute. Then,
the utility of p is always higher than that of q (i.e., p is more
desirable) regardless of the utility function. Cars which are
not dominated by any other cars in the dataset are returned
as skyline cars, which form the initial candidate favorite cars
of a user (and it conforms to our de�nition on the candi-
date setC). For example, after Alice speci�es the constraints
shown in Figure 3(a), FindYourFavorite constructs the ini-
tial candidate set C containing 97 skyline cars for her.

3.2 Interaction and State Visualization

The interaction interface is shown in Figure 3(b). In this
stage, FindYourFavorite interacts with the user for rounds
and at each round, it asks the user a question by displaying s
cars and asking the user to pick the one s/he favors the most.
For the purpose of illustration, we set s to 2 to demonstrate
the e�ect of each preference indicated. According to the user
feedback, FindYourFavorite updates the data structures
(i.e., the candidate utility range R and the candidate setC) it
maintains for �nding the user’s favorite car and the updated
data structures will be visually shown on this interface.
To illustrate, consider the interaction between Alice and

FindYourFavorite. Figure 3(b) is the interaction interface
after Alice is asked one question where in the �rst ques-
tion, FindYourFavorite asks Alice for her preference be-
tween Car 1 (price=$10,500USD, year=2015, power=110PS,
used kilometers=10,000) andCar 2 (price=$8,790USD, year=2010,
power=299PS, used kilometers=100,000) and then, Alice clicks
on the “Choose” button on Car 2 indicating that she prefers
Car 2 to Car 1. After knowing Alice’s preference on only a
pair of cars, FindYourFavorite �lters out 38 cars for her
(out of 97 cars in the initial C), which is a 39% reduction

on the candidate set size, resulting in only 59 cars in the
remaining C (the bottom part in Figure 3(b)). At the same
time, FindYourFavorite asks the second question to Alice
(i.e., the question shown at the top of Figure 3(b)) for more
information about Alice’s preference. To better visualize the
e�ect of each preference indicated, we also plot a histogram
“Cars Left vs. Questions Asked” and a preference space vi-
sualization (i.e., a 3D visualization of R) at the middle of
Figure 3(b) so that a user can clearly visualize what FindY-
ourFavorite has done based on his/her feedback.
Finally, when there is only one car in C , it is the user’s

favorite car and is returned to the user (statistics is also
shown). For example, in Figure 3(c), FindYourFavorite iden-
ti�es the favorite car for Alice by asking 7 questions (i.e.,
asking her to examine 14 cars) among 1000 candidates in
the database. During the interaction, a user can also indicate
that s/he wants to stop immediately by clicking the “Stop”
button in Figure 3(b) (e.g., when they satisfy with the cur-
rent C). In this case, the currentC is returned to the user.

4 CONCLUSION

In this paper, we show how to �nd the user’s favorite tu-
ple in a large database with the help of user interactions.
Based on this idea, we develop an easy-to-use interactive
system, FindYourFavorite, and apply it on a used car data-
base, demonstrating our usefulness and e�ectiveness.

ACKNOWLEDGMENTS

The research is supported by HKRGC GRF 14205117.

REFERENCES
[1] D. Nanongkai, A. Lall, A.D. Sarma, and K. Makino. Interactive regret

minimization. In SIGMOD, 2012.

[2] D. Nanongkai, A.D. Sarma, A. Lall, R.J. Lipton, and J. Xu. Regret-

minimizing representative databases. In VLDB, 2010.

[3] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computa-

tion in database systems. In TODS, 2005.

[4] M. Sharir and E. Welzl. A combinatorial bound for linear programming

and related problems,. In STACS, 1992.

[5] M. Xie, R. C.-W. Wong, and A. Lall. Strongly truthful interactive regret

minimization. In SIGMOD, 2019.

	Abstract
	1 Introduction
	2 System Architecture
	2.1 Architecture Overview
	2.2 Components Description

	3 System Demonstration
	3.1 Constraint Specification
	3.2 Interaction and State Visualization

	4 Conclusion
	Acknowledgments
	References

