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ABSTRACT
In this paper, we study a sub-trajectory similarity search problem
which returns for a query trajectory some trajectories from the tra-
jectory database each of which contains a sub-trajectory similar to
the query trajectory. We show the insufficiency of the distance mea-
sures that are originally designed for trajectory similarity search
where each trajectory as a whole is compared with the query trajec-
tory, and thus we introduce a new segment-based distance measure
called EDS (Edit Distance on Segment) for sub-trajectory similar-
ity search. We conducted experiments on a real data set showing
the superiority of our EDS distance measure.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—spatial
databases and GIS
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1. INTRODUCTION
Due to the popularity of location-tracking devices trajectory data

is ubiquitous nowadays. Trajectory similarity search which returns
for a query trajectory some trajectories from the trajectory database
each of which as a whole is similar to the query trajectory is a pop-
ular query on trajectory data [1–3, 5, 6]. In some cases, a trajectory
that is not similar to the query trajectory as a whole might contain
a sub-trajectory (a portion of the trajectory) that is similar to the
query trajectory, and finding the similar sub-trajectories is useful in
many applications. To illustrate, consider the following scenario.

Suppose that we as a taxi company received a complaint from a
passenger that one of our taxi drivers drove along an unnecessar-
ily long route for a higher charge. Apart from checking whether
this fooling behavior happened, we also want to check whether
some other taxi drivers have cheated passengers by driving along
a similar route. Using the traditional trajectory similarity search
techniques might give us the conclusion that no trajectories are
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Figure 1: (a) Point-based distance and segment-based distance
(b) Segment transformation cost (c) Computational example
similar to the query trajectory. This, however, is usually not the
real case since we might have some taxi trajectories which contain
sub-trajectories that are similar to the query trajectory and thus the
corresponding drivers are bad citizens and should be figured out.

For the sub-trajectory search problem, one may think of the
approach that computes the distance between each possible sub-
trajectory of a trajectory and the query trajectory by using one of
the existing trajectory distance measures [1–3, 5, 6], which, how-
ever, has an expensive computation cost since a trajectory consist-
ing of n sampled points simply hasO(n2) possible sub-trajectories.
In this paper, we design a distance measure called EDS (Edit
Distance on Segment) which avoids the costly enumeration of all
possible sub-trajectories for a trajectory. Instead, EDS only enu-
merates all possible suffixes of the trajectory (note that a trajectory
consisting of n sampled points has O(n) possible suffixes only).
Another related work is [4] which defines a distance measure based
on two segments, instead of two trajectories (or sub-trajectories).

Besides, the existing trajectory distance measures [1–3, 5, 6] are
all point-based which means that only the information about the
sampled points of the trajectory is utilized which sometimes is not
sufficient enough. To illustrate, consider Figure 1(a) where we have
four trajectories each of which has two points and each point is as-
sociated with a triplet (x, y, t) indicating that the point has its lo-
cation at (x, y) and its timestamp of t. According to these existing
distance measures, the distance between the first pair of two tra-
jectories (the two at the top) is the same as the distance between
the second pair of two trajectories (the two at the bottom), which,
makes little sense since obviously the two trajectories in the sec-
ond pair are more dissimilar than the two in the first pair. Our EDS
distance measure is more robust in these cases, since it is segment-
based, meaning that the information of the segments, including not
only the information of points but also the other information such
as direction and length, is utilized for measuring the similarity.
Contribution. We identify the problem of sub-trajectory similarity
search, design a new distance measure EDS for the problem, and
conducted experiments which verified our new measure EDS.

2. DISTANCE MEASURE: EDS
Let T be a trajectory of n segments, (s1, s2, ..., sn). Each seg-

ment si (1 ≤ i ≤ n) has a start point denoted by si.p1 and an end
point denoted by si.p2. Besides, we denote by T.si the ith segment
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of T . Given two points p1 and p2, d(p1, p2) denotes the Euclidean
distance between p1 and p2.

The major idea of our distance measure EDS is to define the dis-
tance between two trajectories to be the minimum cost of a series
of segment-wise transformations each of which changes one seg-
ment to the other. Before we introduce EDS, we define the cost of
a segment-wise transformation, i.e., the cost of changing a segment
to another one. The intuition we use is that given two segments s
and s′, we can transform s to s′ by displacing, stretching and ro-
tating s properly. Thus, we capture the cost of the segment-wise
transformation by using the cost of each of these three operations.

Definition 1. Given two segments s and s′, the cost of the
segment-wise transformation between s and s′, denoted by
cost(s, s′), is defined to be

wdis · cdis(s, s′) + wstr · cstr(s, s′) + wrot · crot(s, s′) (1)
where wdis, wstr and wrot are three weights, cdis(s, s

′) =
d(mid(s),mid(s′))/dmax is the displacing cost (mid(s) is the
mid-point of s and dmax is a large distance such as the max-
imum distance between two points in the trajectory database),
cstr = 1 − min{|s|, |s′|}/max{|s|, |s′|} is the stretching cost
(|e| = d(s.q1, s.p2)), and crot = θ(s, s′)/π is the rotating cost
(θ(s, s′) is the angle between the vector from s.p1 to s.p2 and that
from s′.p1 to s′.p2).

To illustrate, consider Figure 1(b). Suppose that dmax

is 3.16 (the maximum distance between two points).
cdis(s1, s2) = d(mid(s1),mid(s2))/dmax = 2.5/dmax =

0.791, cstr(s1, s2) = 1 − |s2|
|s1| = 1 − 1√

2
= 0.293 and

crot(s1, s2) = θ(s1, s2)/π = (π
2
− π

4
)/π = 0.25. Then,

cost(s1, s2) = 0.791+0.293+0.25 = 1.334 if all weights are 1.
With the segment-wise transformation cost defined, we explain

our distance measure EDS as follows. Let T be a trajectory and
Q be the query trajectory. We denote the distance between T and
Q under the EDS distance measure by EDS(T,Q). We trans-
form between T and Q with two operators, namely insertion and
replacement. We start from T.s1 on T and Q.s1 on Q. We have
three options.

• We insert T.s1 into Q.s1 which means that T.s1 is trans-
formed to the portion of Q.s1 that begins from the start point
of Q.s1 and stops at the point along Q.s1 which is nearest
to the end point of T.s1. We denote this portion of Q.s1 by
por(Q.s1, T.s1). In this case, EDS(T,Q) corresponds to
cost(T.s1, por(Q.s1, T.s1)) plus the EDS distance between
T excluding T.s1 and Q excluding por(Q.s1, T.s1) (which
is defined recursively).

• We insert Q.s1 into T.s1 which has an analogous meaning
as the first option and we define EDS(T,Q) accordingly.

• We replace T.s1 with Q.s1 which means that T.s1 is trans-
formed toQ.s1. Then,EDS(T,Q) is cost(T.s1, Q.s1) plus
the EDS distance between T excluding T.s1 and Q exclud-
ing Q.s1 (which is defined recursively).

Then, the minimum one among these three costs corresponds to
EDS(T,Q). Formally, we have EDS(T,Q) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if |Q| = 0

∞ if |T | = 0 and |Q| �= 0

min{ otherwise

cost(T.s1, por(Q.s1, T.s1)) + EDS(T\T.s1, Q\por(Q.s1, T.s1))

cost(por(T.s1, Q.s1), Q.s1) + EDS(T\por(T.s1, Q.s1), Q\Q.s1),

cost(T.s1, Q.s1) + EDS(T\T.s1, Q\Q.s1)}
(2)where T\s denotes the resulting trajectory of T by excluding s.

Compared with the existing distance measures [1–3, 5, 6], our
EDS distance measure has two advantages. First, in order to do
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Figure 2: Comparison with Existing Distance Measurements

sub-trajectory similarity search (i.e., finding the most similar sub-
trajectory to the query trajectory), with EDS, it is enough to enu-
merate all possible suffixes of the trajectory (which has orderO(n))
while with one of the existing distance measures, it has to enumer-
ate all possible sub-trajectories of the trajectory (which has order
O(n2)). This is because our definition of EDS already traverses
all possible prefixes (See the case of “|Q| = 0”). Second, EDS
is a segment-based distance measure which by its nature is better
than a point-based distance measure (adopted by existing distance
measures) since segments capture more information than points.

In Figure 1(c), we compute the EDS distance between trajectory
Q and T . To obtain the best sub-trajectory in T , we compute the
EDS distance between Q and all the suffixes of T , namely T1 =
T [1, 3], T2 = T [2, 3] and T3 = T [3, 3] where T [i, 3] is the tra-
jectory from segment si to s3. When computing EDS(T1, Q), we
first insert Q.s1 to T.s1 by creating por(T.s1, Q.s1) and compute
cost(por(T.s1, Q.s1), Q.s1). Q.s2 is then replaced with the re-
maining half of T.s1 (i.e. T.s1\por(T.s1, Q.s1)). After these two
transformations, there are no remaining segments in Q and there-
fore all the remaining segments in T are skipped. Similarly, we
compute EDS(T2, Q) and EDS(T3, Q). Finally, EDS(T2, Q)
turns out to be the smallest cost, corresponding to the final answer.

3. EXPERIMENTS AND CONCLUSION
We conducted our experiments on a benchmark dataset “Athens

trucks” (http://www.chorochronos.org/?q=node/5) which contains
1100 trajectories of various lengths. Our query trajectory Q was
generated by first randomly selecting a trajectory from the data set,
second randomly sampling a sub-trajectory of the selected trajec-
tory, and third slightly adjusting the sampled sub-trajectory. We
say that an answer is returned correctly by a query Q if the sampled
sub-trajectory is returned. We vary the number of the segments in
Q for our experiments and use two measures, namely “computation
time” and “hit rate”. The “computation time” means the time cost
of computing the distance measure and the “hit rate” means the per-
centage of the queries that return answers correctly. The results are
shown in Figure 2. According to Figure 2(a), the computation cost
based on our EDS distance measure is significantly smaller than
that based on other distance measures (the efficiency gap is about
10 times faster). According to Figure 2(b), the hit rate based on our
EDS distance measure is higher than that based on other distance
measures (the effectiveness gap is about 1.5 to 10 times better).

In conclusion, we propose a new and better measure EDS for
sub-trajectory similarity search. An interesting direction is to de-
sign some indexing techniques for EDS distance measure.
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