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ABSTRACT
Data preprocessing (DP) that transforms erroneous and raw data to
a clean version is a cornerstone of the data mining pipeline. Due to
the diverse requirements of downstream tasks, data scientists and
domain experts have to handcraft domain-speci�c rules or train ML
models with annotated examples, which is costly/time-consuming.
In this paper, we present MELD (Mixture of Experts on Large Lan-
guage Models for Data Preprocessing), a universal solver for low-
resource DP.MELD adopts aMixture-of-Experts (MoE) architecture
that enables the amalgamation and enhancement of domain-speci�c
experts trained on limited annotated examples. To �ne-tuneMELD,
we develop a suite of expert-tuning andMoE-tuning techniques, in-
cluding a retrieval augmented generation (RAG) system, meta-path
search for data augmentation, expert re�nement and router net-
work training based on information bottleneck. To further verify the
e�ectiveness of MELD, we theoretically prove that MoE in MELD
is superior than a single expert and the router network is able to
dispatch data to the right experts. Finally, we conducted extensive
experiments on 19 datasets over 10 DP tasks to show that MELD
outperforms the state-of-the-art methods in both e�ectiveness and
e�ciency. More importantly,MELD is able to be �ne-tuned in a low-
resource environment, e.g., a local, single and low-priced 3090 GPU.
The codes, datasets and full version of the paper are available [1].
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1 INTRODUCTION
Data Preprocessing (DP) tasks, including the discovery, extrac-
tion, transformation, cleaning, and integration of data from diverse
sources, are crucial for a broad spectrum of organizations [2, 44].
Over the past decades, the focus has predominantly been on a lim-
ited number of tasks such as error detection (ED) [83, 99], data
cleaning (DC) [82], data imputation (DI) [86], entity matching (EM)
[76], entity linking (EL) [24], relation extraction (RE) [27], and col-
umn type annotation (CTA) [27, 32]. A primary challenge in this
�eld arises from the diverse data distributions and requirements
across various tasks, each of which deals with unique issues such
as errors, anomalies, matches, and necessitates the need of speci�c
features or rules for detection, repair, and alignment. Another ma-
jor challenge in DP tasks is the scarcity of manual annotations, as
users are often reluctant to label extensive data due to high costs.
Additionally, resource constraints limit the feasibility of using mul-
tiple large-memory GPUs solely for DP. Therefore, the motivation
for low-resource DP involves the need for e�ective methods that
operate with few-shot data and minimal computational resources.

The advent of large language models (LLMs), such as GPT-3
[25] and open-source LLaMa [111], has introduced a paradigm
shift in addressing DP challenges. These models, typically adopting
a decoder-only Transformer architecture, have demonstrated re-
markable capabilities in DP tasks [90, 126, 127]. The e�ectiveness
of LLMs in DP can be attributed to several inherent characteristics,
including (1) natural language instructions of inputs and outputs,
(2) few-shot learners, and (3) rich prior knowledge. It is noteworthy
that LLMs obeys scaling laws[63], i.e.,more parameters gives better
generative abilities and universal performance in DP. Consequently,
most existing universal LLM-based DP solutions [10, 73, 90, 127]
heavily rely on querying online GPT APIs. However, this approach
encounter issues of stability and data privacy in certain scenarios
because DP handles private data of enterprises in practice in most of
the time and it is impossible for enterprises or governments to send
their core datasets to GPT APIs. Another limitation is the di�culty
in adapting these online models to highly specialized domains. In
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such cases, �ne-tuning LLMs, such as GPT-3.5 or GPT-4, becomes
a necessity, albeit a costly and sometimes infeasible one [73].

Considering the needs that online LLMs cannot �t, we focus
on open-source LLMs with 7B parameters, that can be deployed
locally in low-resource environment. However, by constraining the
parameters of LLMs for universal DP, we face several challenges:
� The capability for a single model to learn representations across
domains is inherently upper limited, even with more parameters.

� It is hard to leverage the world knowledge[21, 124] in LLMs, i.e.,
knowledge learned from large corpus in the pre-training stage,
for �ne-tuning on few-shot data, leading to potential over�tting.

� Because task subspaces of DP tasks are discrete and far away
from each other, traditional methods, e.g., multi-task learning,
are hard to work well for intrinsic task subspace identi�cation.
To address these challenges, we revisit the Mixture of Experts

(MoE) architecture, powered by the recent advancement of LLMs.
Intuitively, an MoE [60] comprises a set of experts (i.e., neural net-
works) and a trainable gating mechanism (i.e., a router network).
The gate assigns weights to the experts and the MoE model pro-
duces a weighted combination of experts’ responses as the output.
This weighting mechanism allows each expert to specialize in dis-
tinct segments of the input space, reducing training/inference costs.

AlthoughMoE has been extensively studied over past decades,
the recent advent of LLMs has necessitated a revisit onMoE. Several
pioneering studies [4, 62] have shown that models with sparsely
activated MoE (i.e., neural network with multiple expert models
and only a subset is activated) can signi�cantly reduce the computa-
tional cost.MoE advocates that language models can be segmented
into specialized sub-models or “experts”, each of which focuses
on di�erent aspects of input. This approach enables e�cient com-
putation and resource allocation. Moreover, MoE facilitates the
information/parameters sharing between tasks, to enhance gener-
alizability by leveraging the inter-connection between tasks [7].

Di�erent from existing MoE based models [4, 62], which embed
a sparse gate network on model parameters, we propose MELD
(Mixture of Experts on Large Language Models for Data Prepro-
cessing), an open-source LLM-based MoE system as a universal
task solver for low-resource DP (i.e., DP tasks addressed in resource-
constrained settings with limited labels).MELD adopts a standalone
router network, which allows independent and domain-speci�c ex-
pert training, and �exible plug-in design of experts during inference.

In training, MELD �rst employs a serializer to transform raw
data from various sources into a standardized representation with
task-speci�c prompts. Then an enhanced Retrieval-Augmented Gen-
eration (RAG) system is used to retrieve similar instances across
domains, generating self-annotations for each instance as training
data. MELD incorporates heuristic methods to identify e�ective
meta-paths for guided data augmentation with multiple experts
(Figure 1). Alongside this, a set of experts is trained using parameter-
e�cient �ne-tuning (PEFT) methods[84, 136], addressing the
scarcity of annotated data, where PEFT involves �ne-tuning with a
small number of model parameters. Finally, a standalone router net-
work is trained to allocate the top-: relevant experts for each input.

Contributions. Our major contributions are listed as follows:
� We present a uniform framework for DP, integrating multiple

DP tasks and datasets into a standardized representation.
� We prove the error bounds for domain adaptations across DP
tasks and the convergence of theMoE design across domains.

� We present an enhanced RAG system, along with a meta-path
selection mechanism, which e�ciently retrieves and generates
e�ective examples across domains, facilitating the training of
experts that exhibit both generalizability and robustness.

� We design e�cient MoE that could be �ne-tuned in low re-
sources, e.g., a RTX 3090 GPU. Also we dynamically assign the
top-: experts for inputs across domains, ensuring data security,
domain generalizability, and feasibility for further �ne-tuning.

� Extensive experiments were conducted on 19 datasets over 10 DP
tasks. Bene�ting from MoE, MELD demonstrates superior few-
shot performance, particularly in cross-domain/task scenarios.
The rest of this paper is organized as follows. Section 2 introduces

the preliminary and the problem de�nition. Section 3 prove the
error bounds for domain adaptations across various DP tasks and
the convergence ofMoE. Section 4 presentsMELD, by delving into
the data preparation, e�cient expert training and router network
training. Section 5 shows the experimental results. After discussing
the related works in Section 6, Section 7 concludes this paper.

2 PRELIMINARY AND PROBLEM DEFINITION
2.1 Preliminary
Large Language Models (LLMs) Representative LLMs, e.g., GPT-
3 [25] and LLaMa [111], are pre-trained on enormous corpora, and
have been shown incredible performance on various generative
tasks in few-shot or zero-shot scenarios. LLMs are well known
for their emergent abilities (i.e., the sudden appearance of unseen
behavior) [33], with no or few labeled data as demonstration on un-
seen tasks. Moreover, open-source LLMs, e.g.,LLaMa [111],Mistral
[62] can be �ne-tuned locally with more tasks, to improve their spe-
cialized abilities, while close-source LLMs, e.g.,OpenAI’s GPT series
(in particular GPT-3, 3.5 and 4) can only be queried online with APIs.

However, LLMsmay su�er from the hallucination problemwhen
demonstration is beyond the knowledge/scope of LLMs, leading to
factual errors or unrelated answers [35]. To alleviate this, strategies
below are typically adopted to constrain the responses of LLMs:
(1) Instruction: a combo of prompts and options (i.e., candidate

outputs/answers) for guiding LLMs to accomplish a given task.
(2) In-Context Learning (ICL): a method of prompt engineering that

provides LLMs with demonstrations in the instruction [26].
(3) Retrieval Augmented Generation (RAG): a method to improve

the quality of responses by feeding LLMs with relevant context
retrieved, without updating the parameters of LLMs [29].

Mixture of Experts (MoE) The Mixture of Experts (MoE) architec-
ture [60] is the basis of many state-of-the-art deep learning models.
For example, MoE-based layers are being used to perform e�cient
computation in high-capacity neural networks and to improve pa-
rameter sharing in multi-task learning (MTL) [69, 81].

The originalMoEmodel can be formulated as ~ (G) = Õ=
8=1 6(G)8

48 (G), where E = {41, · · · , 4=} represents = expert networks, and
6 represents a gate network that ensembles the results from all
experts. Speci�cally, 6 produces a distribution over = experts based
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Figure 1: A toy example of multiple experts for enhanced EM
(entity matching). A meta-path “BLK (blocking) ! DI (data
imputation) ! AVE (attribute value extraction) ! EM ” is
found to help the EM expert to make the correct prediction.

on input G , and the �nal output is a weighted sum of the outputs of
all experts. When truncated to top-: experts, each input only needs
to activate : experts in inference without much information loss.

WhileMoE was �rst developed as an ensemble method of multi-
ple individual models, recent works, e.g., Switch Transformer [41],
Mixtral [62], successfully turn it into basic building blocks (a.k.a.
a router layer, MoE layer) and stack them into transformer layer.
These router layers allocate input examples to di�erent experts in
E, and are jointly trained with these experts. During inference, only
the parameters of top-: experts are activated for each example (e.g.,
top-2 forMixtral). However, such design requires to train experts
all in once, lacking the �exibility for �ne-tuning a single expert.
It is also hard to guarantee the experts are specialized in di�erent
domains, as observed in The Pile dataset [43] forMixtral [62].

In light of this, we focus on external router networks as [18].

Multi-task Learning(MTL)Multi-task learning (MTL) solves multi-
ple tasks at the same time, by exploiting commonalities and di�er-
ences across tasks. InMTL, deep learning-based architectures that
perform soft (i.e., partial) parameter sharing have been proven to
be e�ective [97, 102]. Inspired by this, we can cast DP tasks into a
MTL problem, and solve such problem by multi-gateMoE [81].

2.2 Problem De�nition
In data management and data mining, DP is a critical step to deal
with noises, missing values, inconsistencies and moreover, capture
relations and associations between entries. Major DP procedures
include data cleaning, data integration, data transformation and
data reduction [49]. In this work, we mainly focus on tabular data,
including both relational tables and web tables.

Inspired by the success of instruction-tuning paradigm from the
NLP literature[17], we adopt a universal DP task de�nition.

Assume that we are given a set T of DP tasks {T1,T2, · · · ,T=}.
Each T8 is provided with a set of training queries and associated la-
bels, denoted as X8 = {@1,@2, . . .} and Y8 = {;1, ;2, . . .}, respectively.

De�nition 2.1: (Data Preprocessing Query): A DP query for
task T8 on table ) is de�ned as a quadruple @ = (�=BT8 ,⇡T8 , C,⇠T8 ),
where (a) �=BT8 is the natural-language instruction that speci�es
the task T8 (e.g., entity matching, EM), (b) ⇡T8 is a set of T8 -related

demonstrations (e.g., labeled examples of EM), (c) C 2 ) is a tuple
(a.k.a. entry) from table ) , on which T8 is performed and (d) ⇠T8
is the expected output domain by performing the task following
the instructions on the tuple C (e.g., {match,mismatch} for EM). 2

Given a training query @ for task T8 , its associated label ; gives
the ground truth from the expected output domain⇠T8 . To conduct
a task T8 , one should query an expert with @. To illustrate, we give a
few representative tasks below, and a complete list with illustrating
examples can be accessed in full version[1]:

Entity Matching (EM). Given a pair of tuples C1, C2 in ) , EM is to
infer whether they refer to the same real-world entity.

Error Detection (ED). Given a tuple C and an attribute 08 , ED is to
detect whether there is an error in the 08 -attribute value of tuple C .

Data Imputation (DI). Given a tuple C and an attribute 08 such that
the 08 -attribute value of C is missing, DI is to infer its correct value.

Column Type Annotation (CTA) Given a table) , CTA is to infer the
type of each column ⌘ of) from a set of prede�ned semantic types.

De�nition 2.2: (Expert): An expert 48 trained on DP task T8 , is de-
�ned as a �ne-tuned language model, which takes the query @ as in-
put, and return the task-speci�c output from the output domain. 2

Note that each single expert 48 can response to queries of dif-
ferent tasks, since the experts in E = {41, · · · , 4=} share the same
architecture and most parameters with each other.

De�nition 2.3: (Few-shot Learning): Each task T8 2 T is pro-
vided with few-shot training queries and labels {X8 ,Y8 }, and the re-
maining unlabeled queries are denoted as eX8 . The training setX8 for
T8 contains both labeled and unlabeled queries, i.e.,X8 = X8[eX8 . The
overall training set X = [=8=1X8 is the training set cross all tasks. 2

For task T8 with training queries and labels (X8 ,Y8 ), we denote
⇢E0; (48 ,X8 ) as the performance evaluation, between Y8 and the
output of expert 48 over X8 . For binary classi�cation DP tasks, the
evaluation metrics is F-measure, for the other tasks is accuracy.

Note that given a training query @ 2 X8 for task T8 , e.g., EM,
it may be possible to transform @ (and its associated label) to a
new query-label pair (@0, ; 0) for another task T9 , e.g., DI, via self-
supervised learning, or masking strategies. Here the label ; 0 can be
a masked attribute from the original query @, or self-annotated, de-
pending on tasks. The horizontal axis of Figure 2 give a toy example
that transforms a query for EM to a new query-label pair for DI.

De�nition 2.4: (Low-resource DP): DP tasks are solved by LLMs
trained and deployed in consumer-level small-memory GPUs with
few-shot labeled data. 2

Here we refer to a consumer-level small-memory GPU as one
with memory not exceeding 24GB, and few-shot labeled data as
comprising up to 10% of the original labeled benchmark data.

Problem. The problem studied in this paper is stated as follows.
� Input: A set of tasks {T1, · · · ,T=} with few-shot training data X
in the low-resource DP setting.

� Output: An universal LLM-based system under theMoE archi-
tecture that is able to answer the (unseen) query of all T8 .



KDD ’24, August 25–29, 2024, Barcelona, Spain Mengyi Yan, Yaoshu Wang, Kehan Pang, Min Xie, and Jianxin Li

Task: 
EM

Description Brand Label

Entity 
1

visual studio 
test agent 05 
1 processor

Microsoft
/

Entity 
2

Lightroom 
2011 3 CD 

professional
Adobe

Task: 
DI

Description Bran
d

Label

Entity 
1

visual studio 
test agent 05 1 

processor
/

Microso
ft

Entity 
2

Lightroom 
2011 3 CD 

professional

/ Adobe

Task: EM Description Brand Label
Entity 1 visual studio test agent 05 1 processor Microsoft Mismatch
Entity 2 Lightroom 2011 3 CD professional Adobe

Self-Annotation
With 𝑀𝑅𝐴𝐺

Data 
Transform
From EM

To DI

Generalization
Cross Task

Performance on 
Single Task

Task 𝑇1 ⋯⋯ Task 𝑇𝑛

⋯
⋯

Figure 2: Illustration of our data augmentation method.
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Figure 3: Illustration of Intrinsic Task Subspace (ITS) over
task vectors. The left part[54] shows how LLM responses a
task-speci�c query @ with demonstrations. The right part is
a 2d t-SNE plot of task vectors for di�erent DP tasks over ITS.
Dotted lines indicate decision boundary over di�erent tasks.

3 THEORETICAL ANALYSIS
Despite the empirical success of the MoE architecture in MTL, the
theoretical understanding of such architecture is still elusive. It is
unclear why the experts can be specialized to make predictions
for di�erent inputs, and why the router can automatically learn to
dispatch data. To this end, we provide some theoretical analysis in
this section, answering the following questions:
� Q1: Can various DP tasks (e.g., EM andDI) over di�erent domains
(e.g., scholar and e-commerce) be represented and learned over
a compact low-dimension space, i.e., a intrinsic task subspace?

� Q2: Why cannot a single expert �t well for multiple domains?
� Q3: How the router learn to dispatch data to the right experts?
To answer these questions, we provide the following three theorems.
For the lack of space, the proofs are provided in full version[1].

Theorem 1: (Intrinsic Task Subspace)With uni�ed representa-
tion of di�erent tasks {T1,T2, · · · ,T=} and in-context learning (ICL)
demonstrations ⇡8 ( i.e., ⇡T8 ), �ne-tuning a LLM on task T8 is equiv-
alent to learn a task vector ) 8 (⇡8 ), and such vector is embed in a
low-dimensional and compact intrinsic task subspace (ITS). 2

Theorem 1 [54, 97] indicates that with uni�ed representation and
proper ICL for each task T8 , we can represent and learn multiple DP
tasks T in a small ITS, denoted by V. In other words, �ne-tuning a
small set of parameters in a LLM can generalize it to multiple tasks.
Figure 3 gives a intuitive visualization of ITS over task vectors.

Theorem 2: (Error Bound for Single and Mixture of Experts)
Consider �ne-tuning a single expert ⌘# from the base LLM model
⌘0, to applyMTL over all DP tasks. Let ⇠ ⇠ [ | T |

8=1X8 be the sampled
distribution over all tasks T with # samples, C ⇠ [ | T |

8=1X8 be the

actual distribution over T , ( be the source domain distribution from
⌘0, nC (⌘# ) be the expected error bound of the single �ne-tuned expert,
and n⇠ (⌘# ) be the empirical error. The expected error nC (⌘# ) for
single �ne-tuned expert is upper bounded, i.e.,

nC (⌘# )  n⇠ (⌘# ) +

s
 !(⌘# | |⌘0) + ;=

p
4# � ;=(X)

2#
+ 2⇡ ((,⇠)

where ⇡ ((,⇠) is a distance function representing the gap between the
source domain ( and the target domain ⇠ , and X is a constant.

Let R# (� ) be the Rademacher complexity of the hypothesis space
� associated with expert models, 3N be the Natarajan dimension of
the gating network N within its hypothesis space B, = = |E| and : is
the number of experts selected per query. For mixture of experts, the
error bound is:

$ (4⇠R# (� ) + 2

s
2:3N(1 + ;=( =: ) + 3# ;=(2# ) + ;=(4/X)

2#
)

which holds with a probability of at least 1 � X . 2

Theorem 2 [77, 134]shows that in few-shot learning, single expert
cannot �t well for multiple target domains if (a) the model capacity
is small, i.e.,  !(⌘# | |⌘0), which is negatively correlated with the
model capacity [20], correspondingly large, (b) the sample number
# in the target domain is small, and (c) the empirical error n⇠ (⌘# )
is high, i.e., there is a large bias between the sampled example
distribution⇠ and the actual distribution C. And the error bound of
the mixture of experts is directly proportional to the sparse factor

B = $ (
q

:
# (1 + log( =: )). This implies that, with a constant total

number of experts= selecting fewer experts : leads to a more sparse
network architecture, which consequently reduces the bound on
the generalization error. Moreover, an increase in the number of
training samples # can also minimize the error bound.

These conclusions have been validated through the experimental
results and hyperparameter analysis in Section 5.2.

Theorem 3: (Router learns Clusters in ITS) Given # =
�(3: log:) samples drawn from a mixture of : spherical Gaussian
in 3-dimensions which are 2-separated for some constant 2 , and an
instantiation of theMoE architecture with $ (: log:) experts, if we
initialize the router weights 68 randomly, the router will learn to route
examples according to the ITS task cluster distribution. 2

Theorem 3 [11, 18]guarantees the converge of the router network,
the core ofMoE architecture. However, such performance relies on
a proper set of demonstration ⇡8 , a suitable division of experts E,
and a strati�ed sampling strategy for training the router network.

4 MIXTURE OF EXPERTS ARCHITECTURE
BASED ON LARGE LANGUAGE MODELS

The overall architecture of MELD is presented in Figure 4, and it
consists of the following four components.
� The enhanced RAG component. It takes few-shot labeled data
as input, and enlarge/enrich labeled data in X8 as output X8 in
a self-supervised manner for task T8 . A �ne-tuned sentence-bert
model is used as the backbone of RAG system; such design can ef-
fectively encode data entries from di�erent domains to a uni�ed
representation space. It also retrieves relevant demonstrations
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Figure 4: Architecture Overview

⇡ for each data entry and initializes a set E of experts.
� Themeta-path search component. It takes the enlarged train-
ing data X8 and the expert set E as input, and �nds a meta-path
E8 (i.e., a sequence of experts in E) for task T8 , to augment X8 to
X
0D6
8 , by revising and adding attributes for each query @ 2 X8 .

� The expert re�nement. It takes augmented training data
X
0D6
8 and the expert set E as input, and �ne-tunes the experts

E to E0D6 , guided by the information bottleneck theory.
� The router network N . It takes the (�xed) re�ned expert set
E0D6 as input, and designs with a sparse multi-gate network,
to select top-: experts for answering a query @ 2 X.
Below we elaborate each component one by one.

4.1 Enhanced RAG for Cross-domain Retrieval
Retrieval-Augmented Generation(RAG) is a method to retrieve rel-
evant contextual data entries or chunks from a large corpus (e.g.,
knowledge graph, book) and provide to the model as reference, to
improve the quality of LLM responses. However, data entries from
multiple DP tasks may have di�erent structures, which are hard
to compare and retrieve. In this section, we propose a simple yet
e�ective method to serialize and align data from di�erent domains.

Entry Alignment. For structure and semi-structured data, the struc-
ture similarity holds equal importance as semantic similarity, e.g., if
C1 and C2 share the same brand and category attribute, we can align C1
and C2 as similar entities. For tasks across tables, e.g., CTA, columns
with same semantic type or knowledge graph relations should also
be aligned; for binary classi�cation tasks, e.g., EM, if C1 and C2 are
labeled as match, they should be grouped as similar entries.

Based on this, for each @ in X, we search a positive set P@ (resp.
a negative set N@ ) containing all aligned (resp. unaligned) entries.

Fine-tuning RAG Model. Given (@,P@,N@) as training data, we to-
kenize and pass them to a sentence-bert [98] model MRAG, and
�ne-tune the model with the contrastive learning loss [28]:

min
’
?2P@

� log
exp

�⌦
emb@, emb?

↵
/g
�

Õ
?0 2P@[N@

exp
�⌦
emb@, emb?0

↵
/g
� ,

where emb is an embedding and g is the temperature parameter.
Moreover, we serialize each query @ to a dict format, which also

contains meta-data for @, e.g., table title, column header; if N@ = ;,
we conduct hard negative sample search with the initial model
MRAG over X, to add negative examples for N@ .

Self-Annotation. When the training of MRAG is �nished, we apply
MRAG to self-annotate unlabeled queries in eX8 . e.g., for EM, given

an unlabeled query @8 2 ùX⇢" ,MRAG can search the most similar
@ 9 over entire X and self-annotate the entries in @8 and @ 9 as match.
This procedure follows a self-supervised learning paradigm, and ef-
fectively enlarge the labeled data X8 to X8 by adding self-annotated
data. Besides, we can also apply the transformation technique in Sec-
tion 2.2 to further enlarge X8 with labeled queries from other tasks.
Figure 2 gives an example of both ways for enlarging labeled data.

Expert Initialization. For each task T8 , X8 is used to initialize the
training of each expert 48 , by �ne-tuning a LLM, denoted by M⌧ .

4.2 Heuristic Meta-path Search
There are a host of data augmentation methods [30, 76] for DP.
However, such methods are either statistical or they use pre-de�ned
global operators for augmentation. Alternatively, we consider a
�xed set of experts E = {41, · · · , 4=}, and �nd a meta-path (i.e., a
sequence of experts in E) for task T8 . Such meta-path can help to
augment data in X8 reasonably. Below we de�ne such expert-based
meta-path and data augmentation over the meta-path.

De�nition 4.1: (Meta-path over Experts): A meta-path E8 for
task T8 is a sequence of experts 4 91 , · · · , 4 9= from the experts set E;
it describes the order of experts to be applied for task T8 . 2

De�nition 4.2: (Data AugmentationOverMeta-path): GivenX8
for task T8 , we denote X91

8 as the augmented set of X8 by querying
expert 4 91 . Similarly, XE8

8 is the augmented set of X8 by a meta-path
E8 = {4 91 , · · · , 4 9= }, i.e., by querying the experts in E8 in order. 2

We show an example in Figure 1, in which X⇢" is augmented
by the meta-path E⇢" = {4blocking, 4DI, 4AVE, 4EM} in order.

Heuristic Meta-path search. Given labeled data X8 for task T8 , we
want to �nd a sequence of experts E8 = {4 91 , · · · , 4 9= } such that the
performance of the augmented data, i.e., ⇢E0; (48 ,XE

8 ), is the best.
Here we apply a greedy search algorithm for �nding a meta-path

E8 for task T8 , which reduces the search space by incorporating user-
de�ned sub-optimal paths, e.g., {4Blocking, 4EM} (resp. {4EL, 4CTA})
is widely used in EM (resp. tabular interpretation learning [27]).

After �nding a meta-path E8 for task T8 , we can query E8 to
augment training data X8 to X

0D6
8 with self-supervised annotation.

4.3 Expert Re�nement
Note that for each initialized expert 48 for task T8 , there is a high
risk that 48 may over�t to the biased distribution of X8 , since X

0D6
8

are augmented from X8 and may share a similar biased distribution.
As discussed in [9], such distribution may lead to a higher empirical
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error n⇠ (⌘# ) in Theorem 2. To alleviate such concern, we intro-
duce the Min-Max optimization target guided by the information
bottleneck theory, to improve the generalizability of each expert 48 .

Information Bottleneck. Information bottleneck [109, 110] was used
to balance the complexity of representation and the power of pre-
dicting, based on the notion of minimal su�cient statistics for
extracting information about target . from input- into representa-
tion / . It imposes regularization at representation / by minimizing
the mutual information between input - and the learned represen-
tation / ,i.e.,min � (- ;/ ), while maximizing the mutual information
between target output . and - , i.e., max � (. ;/ ) [64].

In expert training, the information bottleneck theory provides
useful insights: consider training expert 48 with training data (X8 ,
Y8 ); it is equivalent to �nd the most relevant task vector ) 8 as repre-
sentation. On the one hand, the distribution ofX8 should be diverse,
a.k.a.minimize � (X8 ;) 8 ). Otherwise 48 may over�t to a biased distri-
bution of sampled training data X8 , and cannot learn the high-level
and intrinsic features. On the other hand, the distribution of X8
should fall in the same cluster with ) 8 in ITS, as shown in Theorem 3,
a.k.a.maximize � (Y8 ;) 8 ). Otherwise 48 may su�er from under�tting
issue with low performance, due to the lack of relevant information.

Training Process.We denote \MRAG as the parameters for �ne-tuned
RAG model in Section 4.1, and \M⌧

as the parameter of the base
LLM-model of each expert, and RAG(X8 )) as the operations we use
to augment X8 , including both self-annotation and meta-path aug-
mentation. The optimization function of training LLM-based 48 is:

arg min
\MRAG

max
\M⌧

� (M⌧ (X8 );M⌧ (RAG(X8 ))) (1)

Intuitively, (a) max\M⌧
is explicitly conducted, by parameter-

e�cient �ne-tuningM⌧ and maximizing the mutual information
between the output ofM⌧ and label Y8 ; and (b) min\MRAG is im-
plicitly enforced, by controlling the sample parameter forMRAG
and meta-path E8 and adding �X8 = RAG(X8 ) as supplement train-
ing data forM⌧ , while minimizing themutual information between
the labeled training data X8 and external training data �X8 .

In practice, we adopt a iterative optimization strategy to ful-
�ll the target function. Speci�cally,M⌧ is initialized with expert
48 (Section 4.1). Then we iteratively control RAG(X8 ) to add di-
verse training data �X8 by extracting cross-domain examples and
demonstrations, as well as implementing data augmentation with
meta-path E8 . After adding �X8 to X8 , we further �ne-tune M⌧
with new data until convergence. Such iterations continue f times.

After re�nement, 48 is re�ned to 40D68 , which is more robust to
various DP tasks and cross-domain queries, while retaining high
performance on its own T8 . Denote the set of re�ned experts by
E0D6 . We apply low-rank adaptation [56] (a.k.a. LoRA) to �ne-tune
M⌧ for training and re�ning each expert 48 2 E0D6 .

4.4 Router Network
In this section, we train a light-weighted sparse-gated router net-
work N to select top-: experts in E0D6 for each input query.

The information bottleneck theory also provides insight in op-
timizingN . Given query @8 , on the one hand, the selected top-: ex-
perts should be diverse to provide di�erent yet valuable views of @8 ;
this is equivalent to minimize the mutual information between the

Router

x1 ……

Router Network

e1

Top-k

xoutx2

xquery

xn

Figure 5: Model architecture ofMELD

selected experts. On the other hand, the selected experts should be
relevant to@8 ; this is equivalent to maximize themutual information
between the output of selected experts and corresponding labels.

Router Network. Given a labeled query @D 2 X0D6D , letN(@D ) be the
top-: experts selected by the sparse gated network N for @D and
task TD , and (@8D , ;8D ) be the transformed query-label pair from task
TD to T8 with self-annotation. The optimization function is:

max
’

48 2N(@D )
� (48 (@8D ); ;8D ); min

8<9’
48 ,4 9 2N(@D )

� (48 (@8D ); 4 9 (@
9
D )) (2)

In practice, Eq.2 can be approximated with contrastive training
loss [92, 106]. Thus, we apply a transformer network that shares
the encoding layers withMRAG, forN and further �ne-tune it with
contrastive loss. The positive and negative examples are extracted
from labeled data across all tasks. Figure 5 gives an illustration ofN .

5 EXPERIMENTAL STUDY
Our experiments focus on answering the following questions:
� How doesMELD perform compare with other non-LLM meth-
ods and local-LLM methods, especially in few-shot scenarios?

� How does MELD bene�t from theMoE architecture design, es-
pecially in cross-dataset and cross-task scenarios?

� The e�ectiveness and e�ciency comparison between the light-
weighted standalone router network architecture, e.g.,MELD,
and the built-inMoE layer based model, e.g., Mixtral 8⇥7B?

� How does the number of experts, as well as the meta-path selec-
tion, a�ect the overall performance ofMELD?

5.1 Setup
Statistics. As shown in Table 6 in Appendix A.1, as well as the
abbreviation of each DP tasks. We selected 19 datasets over 10
typical DP tasks to show the performance of MELD. In all tasks
except schema matching, we use few-shot labeled data (usually 
10%), as shown in column #Instance (few-shot). The selection of
few-shot examples are kept the same among all methods.

Methods. We categorized the baselines as follows. (1) Non-
LLM methods . (a) ED: Raha[83], (b) DI: IPM[86], (c) Blocking:
DeepBlocker[107], (d) EM: Ditto[76] and PromptEM[112], (e) DC:
Baran[82] and Garf[95], (f) CTA: RECA[32], (g) RE/EL: TURL[27],
(h) SM: CONSchema[116] and SMAT[128], and (k) AVE:MAVE[120].
Other methods, e.g.,HoloClean [99], DODUO [31] have been shown
to be outperformed by the listed competitors [32, 83], and hence not
compared. (2) LLM-based methods. JellyFish[126] uses a 13B LLM
model (1.8⇥ thanMELD) to solve multiple DP tasks. For table inter-
pretation tasks (e.g., CTA, RE, EL), we compared TableLLaMa[131]
which applies a 7B foundation model. For AVE task, we used
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Table 1: Overall Performance

Task Dataset MELD
Few-shot

Non-LLM
Baseline
Few-shot

LLM
Baseline
Few-Shot

Mixtral
Few-shot

EM
&

(BLK)

Amazon-
Google 83.41(74.12) 61.88(50.47) 65.98(/) 51.28(/)

Walmart-
Amazon 91.42(78.80) 79.09(58.21) 42.03(/) 39.78(/)

WDC-All 91.97(31.50) 34.35(1.70) 49.80(/) 48.97(/)
Ant-Buy 91.12(86.20) 84.89(40.66) 71.40(/) 60.42(/)
Semi-Text-
Watch 78.28(59.23) 23.60(2.66) 54.27(/) 40.55(/)

Semi-Text-
Computer 86.46(30.85) 33.90(8.09) 76.80(/) 73.15(/)

DC
Hospital 95.01 67.10 49.30 53.20
Rayyan 82.15 28.50 9.39 6.68
Beer 97.30 90.31 51.30 56.27

ED
Hospital 98.51 95.23 89.41 69.14
Rayyan 90.37 80.21 69.67 31.96
Beer 99.10 100.00 81.64 70.23

CTA SemTab19 89.35 69.70 87.77 89.35
WebTables 96.30 90.93 94.77 80.16

RE WikiGS-RE 89.30 73.50 60.38 65.88
EL WikiGS-EL 87.05 60.55 82.20 73.25

SM CMS 60.27 50.00 59.29 31.01
Synthea 56.00 38.50 40.00 23.53

DI
Walmart 87.50 65.70 57.69 79.82
Amazon 75.12 60.35 60.05 62.62

Restaurant 93.10 37.50 68.97 72.41
AVE OA-mine 74.62 67.00 65.70 77.36

ExtractGPT[6], compared to its local LLMmodel with up to 70B pa-
rameters (10⇥ thanMELD). (3)MoEmodels. We compared the state-
of-the-artMoE foundation model Mixtral-8⇥7B[62] (i.e.,Mixtral),
which embeds theMoE layer N in model parameters, and jointly
train N with a set E of 8 experts, each of which is a 7B LLM.

Default Parameters. For Blocking, ED and EL, we only apply our
RAG model MRAG due to the large search space. For other tasks,
we uses the LLM-based MoE system. Default number of : is set to
3, the number of iterations f for expert re�nement is set to 3, the
demonstration number |⇡8 | is set to 8. g in RAG is 0.02. Detailed
implementation is listed in Appendix A.2 and full version[1].

Metrics To evaluate DP tasks, we measured accuracy for DI, AVE;
top-1 accuracy for EL; top-1 recall for blocking; F1 score for EM,
ED, DC, SM, and micro-F1 score for CTA, RE tasks in a 100-scale.

Environment We select bge-large-en[34] as the backbone for the
RAG models MRAG, and Mistral-7B[61] as the backbone of expert
model by default. We conducted the experiments on a single
machine powered by 256GB RAM and 32 processors with Intel(R)
Xeon(R) Gold 5320 CPU @2.20GHz and 4 Nvidia GeForce RTX 3090
GPUs. Each experiment was run 3 times and the average is reported.

5.2 E�ectiveness Evaluation
We compared the performance ofMELDwith various non-LLM and
LLM baselines in Table 1. In few-shot scenarios,MELD consistently
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Figure 6: E�ciency among di�erent LLMs-based models (4-
bit quantization for Jelly�sh andMixtral on 1 ⇥ 3090)

outperforms all non-LLM baselines, which means thatMELD has
better data utilization. In particular, 10%-20% labeled training data
su�ces to train a robust expert 48 for task T8 , while the shared
parameter from other experts can prevent 48 from being over�tting.

In low-resource settings where labeled data is extremely limited,
LLM baselines are prone to issues such as over�tting and hallucina-
tion problem, due to insu�cient relevant demonstration data[135];
While non-LLM baselines often utilize rule-based approaches or
rely on structural information, and are inherently robust in few-shot
scenarios. MELD compensate such information incompleteness
with MRAG and self-distilled data augmentation with meta-path.

Compared to LLM baselines, which are trained over MTL par-
adigm,MELD beats them with signi�cant fewer parameters. This
indicates that theMoE architecture is good at handlingMTL, and
multiple sparse experts can outperform one dense one. Besides, we
argue that several LLM baselines, including Jelly�sh and TableL-
LaMa, require high-cost pre-training over enormous task-speci�c
corpus with thousands of GPU hours (e.g., millions of Wikipedia
webtables[131]), whileMELD only needs low-cost �ne-tuning for
training each expert from a base model with less than 20 GPU hours.

Compared to Mixtral, which also applies a build-in MoE layer,
we can see thatMixtral outperformsMELD in a few tasks (i.e., AVE,
CTA). However, Mixtral fails to apply a good routing strategy, and
Mixtral does not balance the load well for the task family T to its 8
experts, leading to its better performance in open-domain/complex
tasks with long context and information retrieval, e.g., DI, AVE,
and poor performance in close-domain/simple tasks, e.g., EM, DC.

5.3 E�ciency Evaluation
We compared the e�ciency ofMELD, Jelly�sh and Mixtral in Fig-
ure 6, comparing the inference throughput speed and model process
time. This comparison is conducted on two settings: 4⇥3090 GPUs
and 1⇥3090 GPU with vLLM [68]. Due to the VRAM requirement
ofMixtral, we only report its performance on the former.

Firstly, we report the throughput over 4 GPUs with vLLM [68].
Due to the small size of experts inMELD, a single 3090GPU can hold
a maximum of 16 experts forMELD, while the load-balance system
of MELD and vLLM can gather similar queries within the same
GPU. Therefore,MELD achieves data parallelism over 4 GPUs, and
gain non-trivial 3.7⇥ throughput improvement with 13B Jelly�sh
and 5.6⇥ with 56B Mixtral, which have to apply tensor parallelism,
and su�er from the communication overhead over multiple GPUs.

Secondly, we report the throughput over a single GPU, a preva-
lent consumer scenario. MELD perform well with full precision
model, while Jelly�sh has to apply a 4-bit quantization [42] to make
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Table 2: Cross-Dataset(C-D) and Cross-Task(C-T)

Task Dataset MELD
C-D

MELD
C-T

LLM
Baseline
C-D

LLM
Baseline
C-T

Mixtral
C-D

Mixtral
C-T

EM Amazon-Google 69.05 67.95 18.58 18.58 43.23 43.23
Semi-Text-Watch 65.07 51.13 20.52 20.51 37.12 37.12

CTA SemTab19 76.84 61.21 15.79 7.96 64.83 61.64
WebTables 86.76 88.95 38.92 14.29 79.72 67.64

DI Walmart 54.80 54.80 43.26 17.86 79.82 78.85
Restaurant 75.86 75.86 68.96 6.95 72.43 58.62

Table 3: Performance for Ablation Study

Task Dataset MELD
w/oMoE

MELD
w/o RAG

MELD
w/o Meta-Path

MELD
withMixtral

EM

Amazon-Google 76.70 69.21 62.52 77.85
Walmart-Amazon 87.66 81.44 79.55 91.03

WDC-All 90.38 83.16 91.73 91.32
Ant-Buy 87.58 85.75 90.12 85.26

Semi-Text-Watch 70.78 55.07 39.89 75.42
Semi-Text-Computer 79.49 42.02 63.74 81.98

inference on a single GPU, andMixtral cannot deploy on a single
GPU even with 4-bit quantization, due to OOM issues. Although
MELD is around 1.3⇥ slower than 4-bit Jelly�sh, the quantization
is time-consuming and it leads to a signi�cant performance drop.

We also report the model process time of each methods, i.e., the
time of merging trained LoRAs into the base model and preparing
it for inference with vLLM. MELD applies a dynamic LoRA switch
technique, which avoids mergingmultiple LoRA into a single model,
and only needs to load and concatenate on multiple LoRAs, reduc-
ing the i/o cost. While Jelly�sh and Mixtral have to apply a time-
consuming merging and quantization operation. As a result,MELD
is 10⇥ and 30⇥ faster than Jelly�sh and Mixtral in model process.

5.4 Cross-Dataset and Cross-Task Comparison
We evaluated the cross-dataset (i.e., C-D) and cross-task (i.e., C-T)
performance ofMELD, where C-D means we mask expert 48 and
training data X8 for task T8 , while C-T means we mask all experts
and training data that are same as T8 (e.g., mask all EM experts for
evaluation on the Amazon-Google dataset). The result is presented
in Table 2. To prevent the domain overlap, we select 6 datasets with
di�erent domains, and limit the overall experts ofMELD into 6.

Compared with LLM baselines,MELD su�ers less performance
drop in C-D and C-T scenarios, which is contributed by the informa-
tion bottleneck guided expert training, as well as the RAG system
across datasets and tasks. Nonetheless, Mixtral also performs
well in open-domain tasks, which means theMoE architecture is
suitable inMTL. Besides, the shared parameters of experts inMELD
and Mixtral e�ectively prevent them from being over�tting to
few-shot data and speci�c task, or su�ering hallucination problems.

5.5 Ablation Study
We selected EM for ablation study, varying the following in Table 3:
� MELD w/o MoE, a single expert �ne-tuned per task;
� MELD w/o RAG, where each expert is �ne-tuned without cross-
domain data augmentation and RAG; and

� MELD-w/o Meta-Path, where each expert is �ne-tuned without
meta-path based data augmentation

Table 4: Performance for Di�erent LLM parameter size

Task Dataset F1-Score
(Mistral-7B)

F1-Score
(Vicuna-33B)

Train Time
(7B/33B)

Inference Speed
(7B/33B)

EM Amazon-
Google 83.14 84.17 2944/8389 19.56/2.93

DC Rayyan 82.15 80.62 1275/5494 27.24/6.10
CTA SemTab19 89.35 87.77 2792/5821 25.28/7.33
RE WikiGS-RE 89.30 83.88 501/2174 54.52/15.81

Table 5: Performance compared with GPT-4

Task Dataset MELD
Few-shot GPT-4

LLM
Baseline
Few-Shot

Mixtral
Few-shot

EM
Amazon-Google 83.41 74.21 65.98 51.28
Walmart-Amazon 91.42 90.27 42.03 39.78

Ant-Buy 91.12 92.77 71.40 60.42

SM CMS 60.27 59.29 59.29 31.01
Synthea 56.00 66.67 40.00 23.53

DI Restaurant 93.10 97.75 68.97 72.41
AVE OA-mine 74.62 80.20 65.70 77.36

With only a domain-speci�c expert 48 , MELD w/o MoE, is not
the good solution, since di�erent experts can provide additional
information to boost the performance.MELDw/o RAG su�ers from
performance drop over all scenarios, justifying the e�ectiveness of
MRAG. For semi-structured or low-quality data, e.g., semi-text-w
and amazon-google, the meta-path can augment structural informa-
tion and signi�cantly improve the performance. As remarked earlier,
if we replace the router networkN withMixtral, it also su�ers per-
formance drop, due to unbalance load between experts inMixtral.

5.6 Hyper-parameter Analysis
We tested the impact of : and the distribution of task vectors ⇥ and
attention weights across experts in E and tasks in T . Following
[54], we present the t-SNE plot �gure in Figure 3, to visualize the
embeddings generated by E and router network N . This proves
that N dispatch queries based on the latent distribution of ⇥.

Figure 7 provides the sensitive analysis of number : . Initially, the
performance rises with the number of experts. However, when : �
4, the overall performance shows a slight drop, while the parameter
size still increases. This justi�es that involving more experts are
not always good, since their inherit parameters may con�ict.

We provide the attentionweights across experts in full version[1].
The utilization rate of experts diverged signi�cantly across tasks and
datasets. We also provide the comparison ofMELD and online GPT-
4 in Table 5, following the best performance in [6, 126]. Similar to
Mixtral, GPT-4 shows better ability in complex/open-domain tasks.

In Table 4, we compare the performance with di�erent backbone
model for expert, and evaluate their performance, training/infer-
ence speed, and cost under the same conditions across several rep-
resentative tasks and datasets. Our �ndings indicate that utilizing a
larger model results in modest performance improvements but in-
curs signi�cantly higher training and inference costs. As discussed
in[85, 135], increasing the model size does not necessarily translate
to enhanced performance in DP tasks. In light of our low-resource
setting, we currently limit our base model parameter size to 7B.

6 RELATEDWORKS
We brie�y review the related works as follows.
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Figure 7: Performance for di�erent number of experts :

6.1 Data Preprocessing Solutions
Non-LLM solutions. For ED and DC, traditional methods mainly
depends on hand-crafted rules [12, 15, 19, 39, 40, 45, 46], pattern
discovery [13], statistical modeling [16, 58, 70]. While recent works
apply ML model, they focus on few-shot learning with a series of
ML pipelines [53, 79, 82, 83, 99, 119] or pre-trained language models
(PLMs) [30, 95]. For entity resolution (i.e., Blocking, EM), traditional
solutions mostly consider attribute equivalence, hashes or similari-
ties [5, 38, 47, 48, 93, 114], while recently ML methods for blocking
has also been invested [107], following the application of ML and
PLMs for entity matching [30, 36, 72, 75, 76, 87, 112, 133]. For
tabular understanding [129] (i.e., SM, CTA, RE, EL), most of recent
works focus on table representation learning [27, 31, 32, 59, 128],
usually cooperated with �ne-tuned PLMs. For data extraction
(i.e., DI, AVE), while traditional rule-based solutions [37, 99, 104]
remain one of the prevalent approaches, a variety of ML models are
applied, including LSTM-CRF [132], GAN [105, 123], autoregressive
models [55], OT [89], autoencoders [91, 122], transformer-based
ML methods [3, 37, 108, 117, 118] and PLMs [86].

Instead of focusing on one or a few similar DP tasks as above,
we aim to design a universal DP task solver across all domains.

LLM solutions. Recently, a host of pioneering works focus on trans-
forming DP tasks into generation tasks, leveraging online or local
LLMs. Online models, e.g.,ChatGPT, GPT-3, [66, 73, 90, 94, 127], typ-
ically employ various prompt engineering methods on frozen LLMs
or �ne-tune ChatGPT for a variety of table-related tasks. However,
such implementation on online model is unstable and costly. Worse
still, data privacy cannot be guaranteed. There are also works on
�ne-tuning and deploying local LLMs [6, 126, 131] on various DP
tasks, which however, aim to develop one base model for various DP
tasks. They cannot perform well inMTL, and require to pre-train
LLMs which is costly, while our method only requires low-cost
�ne-tuning, and incorporateMoE for high-performanceMTL.

6.2 Mixture of Experts
MoE has been investigated in natural language processing [14, 22,
41, 65, 69, 80, 88, 137–139] and it has been proven to be an e�ective
method of increasing the model’s capacity in parameter size, where
certain modules of the model are activated, while computation is
kept the same or close to its dense counterparts. Their is a host of
work focusing on improving the routing strategy of MoE [51, 71,
100, 137], to sparsely select a single or : experts [11, 18, 139]. MoE
has also be well invested in multi-task learning (MTL) [21, 78, 81],
including multilingual machine translation [23, 51, 67], natural
language generation [115, 125] and recommendation system [130].

Unlike these studies, we apply MoE by scaling both the volume

of data, and the number/types of DP tasks, aiming to mitigate the
instability issue inherent in the training theMoE architecture.

Recently, a variety of work focuses on applying a uni�edMoE
base model toMTL, e.g.,Mixtral [62], DeepSeek-MoE [4] and switch
transformer [41]. [103, 121] focus on how instruction �ne-tuning
with scaled tasks can counteract the generalization challenges tied
toMoE models combined with small models. Di�er from this, we
scrutinize the e�cacy of instruction �ne-tuning of each expert,
and present an extreme parameter e�ciency with small experts at
a large scale up to 7B parameter base model. We use a MoE-like
structure to address the parametric knowledge retention issue in
LLMs, rather than signi�cantly expanding the model parameters.

6.3 Multi-LoRA Architecture
Multi-LoRA experts. Several existing works treat di�erent LoRA
as individual experts, including LoraHub [57], FLAN-MoE [103],
MOELoRA [78] and LoRAMoE [21]. However, theymodify the archi-
tecture of LLM, thus cannot easily combine with existing LLM e�-
cient inference framework, and falls short in inference speed, while
MELD can extend to various LLM architecture with high e�ciency.

Model Fusion. Various studies focus on model fusion[50, 74], which
merge multiple adapters with di�erent optimization strategies to
achieve better MTL performance, including AdapterFusion[96],
MerA[52] and Adamix[113]. However, the above methods only
apply model fusion in PLMs for betterMTL performance, and their
process for mixture of adapters may introduce additional computa-
tion cost with signi�cant more parameters.MELD applies a uni�ed
framework to jointly optimize expert set and router network based
on LLM, and concentrate on sparse activatedMoE, avoiding intro-
ducing any additional trainable parameters during merging phase.

7 CONCLUSIONS
We proposed an e�cient Mixture of Experts on Large Language
Models for Data Preprocessing (MELD) that is a universal solver
for the low-resource DP tasks. To adapt to low-resource environ-
ment, we develop several expert-tuning andMoE-tuning techniques,
including the RAG system, meta-path search strategy, expert re�ne-
ment and router network training. We also theoretically prove that
MoE in MELD is superior than a single expert and the proposed
router network is able to assign data to the right experts. Finally
we conduct thorough experiments to show MELD outperforms
state-of-the-art methods in aspects of e�ciency and e�ectiveness,
especially in the low-resource environment.

In future work, we will explore the possibility to adaptMELD in
multi-source setting with limited human annotation, and integrate
such additional information into complex structures, e.g. graph.
Also, the RAG inMELD could be replaced to �t for more complex
scenarios, e.g. searching and retrieving relevant information over
high-dimensional data spaces with vector database.
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A APPENDIX
A.1 Dataset Info
Table 6: Task, Datasets, and few-shot labeled sample number.

Task Dataset #Instance
(few-shot)

#Instance
(All)

Entity Matching
(EM)
&

Blocking

Amazon-Google[76] 100 6874
Walmart-Amazon[76] 100 6144

WDC-All[76] 100 7229
Ant-Buy[76] 100 5743

Semi-Text-Watch[112] 80 5540
Semi-Text-Computer[112] 80 12538

Error Detection(ED)
&

Data Cleaning(DC)

Hospital[82] 20 1000
Rayyan[82] 20 1000
Beer[82] 20 2410

Column Type
Annotation(CTA)

SemTab19[32] 1920 7603
WebTables[32] 15420 61023

Relation Extraction(RE) WikiGS-RE[27] 6502 65026
Entity Linking(EL) WikiGS-EL[27] 5441 54410

Schema Matching(SM)
CMS[128] 20505 20505

Synthea[128] 23709 23709

Data Imputation(DI)
Walmart[86] 242 2421
Amazon[86] 2001 20013

Restaurant[86] 86 864
Attribute Value
Extraction(AVE) OA-mine[6] 286 1452

A.2 Mixture of Experts Implementation
Given query @D , a well-trained router networkN assigns : out of =
�xed experts for processing it. According to theorem 1, �ne-tuning
on a small subset of parameters can perform well, so we apply
low-rank adaptation[56](a.k.a. LoRA) to �ne-tune M⌧ for training
and re�ning each expert 48 2 E0D6 . So the storage of E0D6 over =
experts, are not = copies of LLM model, only = LoRA weights.

To provide a simple yet e�ective test case, illustrating the gener-
alization of the proposedMELD framework, we currently select the
merging method implemented by Peft[84] o�cially, which merge
and concat the LoRA weights to generate a new LoRA weight in
same parameter size, a prevailing method in di�usion models[101].

We apply LLaMA-Factory[136] for expert training. For inference,
to serve the requirement of streaming pipeline, which need to
generate per-example experts in LLM reference, we apply a multi-
LoRA query system based on Punica[8] and vLLM[68]. Such system
can support serving one base LLM model and up to 200 LoRA
weights(a.k.a. experts) on one single GPU at once, dynamically
generate and switch to new experts for incoming queries without
signi�cant computation e�ciency loss duringMoE inference.
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