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Abstract—DreamCreek is a system for grading the capacity of
lithium-ion battery cells. An electric vehicle (EV) battery pack
consists of thousands of lithium-ion cells; these cells must have a
balanced capacity, measured by a formation and grading phase.
This phase is costly, taking 14–20+ hours. DreamCreek aims to
optimize this process, by collecting data from partial charge.
Using the data, it determines the capacity of lithium-ion cells by
employing both machine learning prediction and logic deduction,
to reduce the usage of energy and increase the production. We
will demonstrate how DreamCreek works with a guided tour, and
show how it reduces the time of the formation and grading phase
to 4 hours, with an error rate in the range of [0.06%, 1%].

Index Terms—Battery formation and grading; graph analysis

I. INTRODUCTION

The Battery Formation and Grading System Market has
been singled out as a specialized industry segment [1] for the
manufacturing and maintenance of batteries, including those
used in electric vehicles (EVs), electronics, and energy storage.

For example, an EV battery pack is composed of thousands
of lithium-ion cells. These cells must have a balanced capacity,
to avoid safety issues like thermal runaway. A key process
to the manufacturing of the cells has two steps: (a) it starts
with a formation step to “activate” a cell by performing initial
charge on it, followed by a battery standing step to stabilize
its voltage and cool off the cell, and (b) it then conducts a
grading step to measure the capacity of the cell based on its
individual characteristics, by continually charging until fully
charged and then fully discharging it. The total amount of
electricity discharged is the capacity of the cell. This process
is essential to ensure the reliability and quality of the cell.

This process is, however, costly. It takes 14 to 20+ hours
at different production lines in the industry. It is energy-
consuming; as estimated in [2], reducing the battery charge
energy by half can save $65,000 per GWh. It accounts for more
than one third of the total cost of manufacturing, and is con-
sidered one of the bottlenecks that hinder manufacturers from
increasing output and reducing the cost of battery production.

In light of this, the industry calls for AI technologies to help
[1]. ML models have been tried to predict the battery capacity.
However, the accuracy of the ML models often struggles to
meet the ultra-high requirements (≤ 1% error rate) in battery
manufacturing. Is it possible to improve by reducing the false
positive (FPs) and false negatives (FNs) of ML predictions?

Dream Creek (Section II). In response to the needs, we have
developed a system, DreamCreek, to assist battery formation
and grading. It has been deployed at several production lines;
it reduces the time of formation and grading to 4 hours, and

keeps the error rate under 1%, as low as 0.06%. These translate
to an 80% reduction in energy consumption.
DreamCreek has the following unique features.

Partial charge. As opposed to full charge and discharge in
traditional process, DreamCreek only partially charges a cell,
e.g., to 40% (or to a cutoff voltage), and collects data in that
process. It then grades the cell using the data without any
discharge. By analyzing the data (including those collected
before formation), DreamCreek accurately grades the capacity.

ML + logic. The core of DreamCreek is the graph association
rules (GARs) [3], which consists of a graph pattern and a logic
dependency. The pattern captures the association between pro-
cedures, states and metadata of a cell, and the dependency de-
duces the capacity based on the association from the data col-
lected. GARs may embed ML models for grading and anomaly
detection, and are discovered from historical data offline.

Grading and anomaly detection. DreamCreek collects data
online during manufacturing, based on which it determines
the capacity of a cell or its anomaly (i.e., it cannot be packed
with other cells). By training and embedding designated ML
models in GARs, it filters FPs and FNs of ML predictions
by incorporating additional logic conditions in GARs [4], and
reduce the need for large amount of training data for ML.

Flexibility. We can configure parameters in DreamCreek, e.g.,
the combination of procedures and constraints of a procedure,
and adapt it to different production lines. Here each production
line has its cutoff voltage (which decides the ratio α% of par-
tial charge); this is determined by its manufacturing process.

Demonstration (Section III). We will provide a guided tour
of DreamCreek. We will showcase how capacity is graded
and how anomaly is detected, reducing the time and energy of
battery manufacturing. Participants are invited to interact with
DreamCreek and experience how it beats traditional processes.

II. AN OVERVIEW OF DREAM CREEK

This section presents the background of the battery forma-
tion and grading process (Section II-A), graph association rules
(Section II-B) and the system architecture (Section II-C).

A. Battery Grading
There are various battery-manufacturing production lines,

each consisting of different procedures (see Figure 1 for an ex-
ample production line), e.g., stir, formation, grading, executed
one by one. No matter what production line is used, formation
and grading make a key phase. The capacity of a cell is not
a constant due to the fluctuation of production parameters.



Fig. 1: A diagram of one battery cell production flow

To grade the capacity of a cell, the traditional formation and
grading phase is costly (e.g., 14 to 20+ hours) since it requires
full charge/discharge (see Section I). Worse yet, this phase is
hard to speed up physically, e.g., the charging current must
not exceed the recommended charge rate for safety reasons.

In light of this, ML models have been explored to replace
the actual tests of capacity [5], [6]. As reported by our industry
partners, however, these models often yield a high error rate,
since it is challenging to handle th high variability in battery
chemistry (e.g., a slight difference in temperature can greatly
impact the capacity) and the lack of adequate and representa-
tive training data that accurately reflects these variable factors.

B. AI for Grading
To improve the accuracy, DreamCreek takes all procedures

of the production process into account, collects data, partially
charges the cells in formation and grading, and deduces the
capacity by unifying ML prediction and logic deduction.

Graphs. DreamCreek discretizes the production of cells as a
time series of procedures, namely pt1 , . . . , ptm , and models the
process as a graph G = (V,E, L), so that we can capture the
interactions and associations between different stages of the
manufacturing process, allowing for better analysis, especially
for skewed training data that lacks adequate samples at tail.

More specifically, (1) V is a finite set of vertices and each
vertex v in V can be a procedure, a state of procedures or a
battery cell; (2) E ⊆ V × L(E) × V is a finite set of edges
(v, l, v′) with label l; we support three types of edges: (a) a
transition edge connects two procedures (pti , ptj ) for ti < tj ,
(b) an association edge links a battery to a procedure, and
(c) a status edge connects a procedure p and a state; and (3)
each vertex v in V can also carry attributes along with range
constraints, e.g., a procedure vertex can carry its charging
current range, and a battery vertex can carry its capacity
interval. An example piece of G is shown in Figure 2.

GARs. DreamCreek grades the capacity by applying Graph
Association Rules (GARs) [3]. GARs are defined with (a) a
graph pattern to collect relevant entities (e.g., procedures and
states), and (b) a dependency on the correlations of the entities.

Graph pattern. A pattern is Q[x̄] = (VQ, EQ, LQ, µ), where
(1) VQ (resp. EQ) is a set of vertices (resp. edges), (2) LQ

assigns a label LQ(u) (resp. LQ(e)) to each u ∈ VQ (resp. e ∈
EQ), (3) x̄ is a list of distinct variables, and µ is a bijective
mapping from x̄ to VQ, a distinct variable to each v in VQ.

A match of Q[x̄] in graph G is a homomorphism h from Q
to G such that (a) for each u ∈ VQ, LQ(u) = L(h(u)); (b) for
each e = (u, l, u′) in Q, e′ = (h(u), l, h(u′)) is an edge in G.

Dependency. A predicate of Q[x̄] is one of the following:

p ::= xi.A⊗ xj .B | xi.A⊗ c | M(x1.Ā1, . . . xn.Ān),

Fig. 2: Example graph and pattern

where ⊗ is one of =, 6=, <,≤, >,≥; xi is a variable in x̄
(i ∈ [1, n]); c is a constant; A and B are attributes; and xi.Āi

is a list of attributes at “vertex” xi. We support (a) attribute
predicates (i.e., xi.A⊗xj .B and xi.A⊗c) to compare values;
and (b) ML predicates that return a Boolean value at (x1.Ā1,
. . . , xn.Ān), e.g., M < δ if the predicted capacity of a cell
is less than a given threshold δ for a regression model M.

A Graph Association Rule (GAR) ϕ is defined as

Q[x̄](X → p0),

where p0 is either x0.capacity = c for capacity grading of
battery x0, or x0.status = anomalous for anomaly detection,
Q[x̄] is a pattern, X is a conjunction of predicates. We refer to
Q[x̄] and X → p0 as the pattern and dependency of ϕ, and to
X and p0 as the precondition and consequence, respectively.

Embedding ML in logic. DreamCreek trains several ML mod-
els using historical data, including (a) Mg, a LightGBM-
based regression model [7] via supervised learning for capacity
grading; and (b)Ma, a LightGBM-based classification model,
which returns true if it predicts a cell to be anomalous.

As remarked earlier, using ML models alone often yields a
high error rate, e.g., given inaccurate Ma, it may easily mis-
classify a cell. To tackle this, ML models are embedded as
predicates in GARs, and we use additional conditions to reduce
FPs and FNs of ML models, elaborated usingMa as follows.

(1) Q[x̄](Ma = true ∧X1 → x0.status 6= anomalous). That
is, althoughMa predicts the cell x0 to be anomalous (i.e., pre-
dicts true), if X1 holds, we override the prediction ofMa and
conclude that x0 is not anomalous, reducing the FPs of Ma.

(2) Q[x̄](Ma = false ∧X2 → x0.status = anomalous). That
is, while Ma suggests that the cell x0 is regular (i.e., predicts
false), we check additional conditions X2 to filter FNs, i.e., it
is still detected as anomalous if conditions in X2 are satisfied.

Note that we also use Q[x̄](X3 → x0.status = anomalous),
where X3 includes no ML predicate, to detect anomaly based
on side features that are overlooked by ML model Ma.

Examples. Below are (simplified) GARs from real-life data.

(1) Capacity grading. A (simplified) GAR is ϕ1 = Q1[x̄](X1

→ x0.capacity = 8), where Q1 is a pattern shown in Figure 2,
and its consequence grades a matching battery cell as Capacity
Interval 8. Together with pattern Q1, precondition X1 specifies
the following: (a) the weight before and after the Electrolyte
Filling procedure (x1) is 555±25g and 605±25g, respectively;
(b) its Formation-A procedure (x2) uses a constant charging
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Fig. 3: The architecture of Dream Creek

current at 3.8A with initial voltage between 0–100mV, con-
strained by final state 324 (x4); and (c) its Formation-B proce-
dure (x3) uses a constant charging current at 8.8A, with initial
voltage between 3.3–3.4V, constrained by final state 738 (x5).

(2) Anomaly detection. A GAR is ϕ2 = Q2[x̄](x1.voltage ≤
1.9V ∧ x1.temperature ≥ 86◦C ∧ Ma(x1) = false →
x0.status = anomalous), where Q3 is similar to Q1 but does
not contain state vertices. It overrides incorrect rulings ofMa

by considering erratic measurements (e.g., voltage and tem-
perature) in Electrolyte Filling (x1), reducing the FNs ofMa.

(3) Regular cell identification. We can identify regular cells
with side features, e.g., a GAR is ϕ3 = Q3[x̄](x2.voltage ≤
3.30V ∧ x2.step time ≥ 269s ∧ x3.voltage ≥ 3.37V →
x0.status 6= anomalous), where Q3 is the same as Q2. It
identifies regular cells based the voltage and time spent on
some steps in formation. This GAR was discovered from a
production line in a leading manufacturer of electric vehicles.

Algorithms. DreamCreek implements the algorithms for GAR
discovery [8] and association deduction with GARs [3]. Both
algorithms are parallely scalable, i.e., they provably guarantee
to reduce runtime when given more processors [9].

Rule discovery. DreamCreek learns GARs and trains ML mod-
els (e.g., Mg, Ma) offline using historical data. It discovers
GARs for capacity grading and anomaly detection, by expand-
ing pattern Q with procedure vertices level-wise and adding
connected state vertices in the process. Meanwhile it learns de-
pendencies on the attributes of these vertices [8]. The learned
ML models are embedded as predicates in the mined GARs.

Association deduction. DreamCreek predicts capacity and de-
tects anomaly online for each cell in production. Modeling the
data as a graph G, it recursively applies the learned GARs to
G by extending the chase [3]. It returns either the capacity
of the cell, or a flag if the cell is an anomaly. The chase is
Church-Rosser, i.e., it converges at the same result no matter
what discovered GARs are used and in what order they are
applied [3]. That is, the process returns a deterministic result.

C. The Architecture of Dream Creek
DreamCreek is built on top of Manufacturing Execution

System (MES) (see Figure 3), which has been deployed by
the industry to track battery production. For each battery cell,
DreamCreek reads online its time-series data monitored by

sensors and collected by MES. It performs an initial charge to
active the cell for formation, cools it off, and then recharges it
to α% of its full charge in the grading stage. Based on the data,
it grades the capacity and detects anomaly using GARs mined.

Workflow. DreamCreek has offline and online parts.
Offline. In the offline phase, we begin by collecting historical
data from MES, followed by data cleaning and enrichment for
data pre-processing. Historical data is partitioned into training
data, for training models and discovering GARs, and validation
data for parameter tuning. It has the following main modules.
◦ Pre-processing. This module fixes errors and outliers [10],

[11], gathers data from anomaly cells and builds graphs.
◦ Rule learning. This module trains ML models and discovers

GARs using the processed historical data [8]. To facilitate
training, it extracts attributes by computing (a) the differ-
ence between two (shift) time series; and (b) the statistical
information in a fix-sized window, e.g., max, min and mean.

For each production line, the models and GARs are learned
only once and used for all cells. This said, DreamCreek moni-
tors changes to the distribution of time series and accumulates
new data. If the changes reach a certain threshold, it triggers
(incremental) training and learning offline in the backend.

Online. Once the GARs and the models are ready, DreamCreek
proceeds to the online phase, where it first collects real-time
data from MES and then applies GARs to grade capacity and
detect anomaly. It has the following main modules.
◦ Data collection. This module transforms the real-time data

from MES into a graph after quick cleaning [10].
◦ Deduction. This module deduces the capacity of cells and

detects anomaly by applying learned GARs to the graph.
◦ Control. This module (a) aggregates statistics about battery

cells in production, e.g., capacity distributions of cells; (b)
estimates the reduction of time for each cell; and (c) visu-
alizes the performance difference with various baselines.

As remarked earlier, DreamCreek has been deployed at
different production lines. It accommodates various scenarios
by allowing users to configure it to different production lines.

III. DEMONSTRATION SETUP AND PLAN

This section proposes our plan for demonstrating.

Demonstration setup. We will use a single machine powered
by 16GB RAM and 8 processors with Intel(R) Xeon(R) Gold
5320 CPU @2.20GH. For the demonstration, we will upload
the data in dump files exported from the MES system.

For training, we will use historical data from a traditional
production line, with measurements throughout the formation–
grading lifecycle. For testing, we will use data from a pro-
duction line at which DreamCreek is deployed. It (partially)
charges a cell and decides its capacity using the data collected.

A guided tour. We will walk the participants through the
formation and grading of battery production with DreamCreek.

(1) Configuration. We will show how DreamCreek adapts to
different production lines. The users may choose different
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Fig. 4: A snapshot of analysis panel

combinations of procedures and set the parameters of each
procedure. Moreover, the users may select ML models from a
library, for capacity grading and anomaly detection.

(2) Offline processing. We will show how DreamCreek en-
riches historical data and uses the data to train the selected ML
models and discovers GARs. We will showcase how the FPs
and FNs of ML models are reduced in a validation dataset.

(3) Online processing. For each cell in production, we will
show which part of the data is collected in partial charge. On
the data, DreamCreek applies the discovered GARs, grades the
capacity, and detects anomaly. We will explain the output of
DreamCreek on each cell and estimate the reduction of time.

(4) Analysis panel. We will see how DreamCreek outperforms
the existing baselines (see below). The analysis panel shows
aggregated statistics about the graded cells, e.g., their capacity
distribution and the error rates compared with baselines.

Interaction. Participants can interact with DreamCreek.

(1) Capacity grading. The participants may pick a production
line, and let DreamCreek determine the capacity of its cells.

In the analysis panel (Figure 4), they will see (a) the capac-
ity distributions estimated by DreamCreek and other baselines
(e.g., the MLP and SVR models in [12]), (b) the real capacity
distribution measured by full charge and full discharge, (c) the
error rate comparison between different methods, and (d) the
percentages of regular/anomalous cells (not shown). As shown
there, the estimated capacity distribution of DreamCreek is
close to the real distribution. In comparison, the capacity
distributions of other methods deviate a lot from the real
distribution, resulting in higher error rates and absolute errors.

(2) Anomaly detection. We will also invite the participants to
experience the process of anomaly detection. They can view
the analysis details of any selected cell, and examine the results

Fig. 5: A snapshot of capacity curve

returned by DreamCreek and by the traditional process.
The snapshot in Figure 5 visualizes the comparison between

the two processes, where the x-axis represents the formation-
grading lifecycle and the y-axis is the capacity of the selected
cell. The traditional process requires full charge and full dis-
charge. In contrast, DreamCreek significantly reduces the time
bt collecting necessary (partial) data without discharge, based
on which it detects anomaly in seconds. Users may compare
the two processes, and experience how DreamCreek works.

(3) Others. The participants are also welcome to witness how
DreamCreek collects data from MES, enriches the data with
external features, trains the models, and discovers GARs.
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