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Abstract—When faced with a database containing millions of
products, a user may be only interested in a (typically much)
smaller representative subset. Various approaches were proposed
to create a good representative subset that fits the user’s needs
which are expressed in the form of a utility function (e.g., the
top-k and diversification query). Recently, a regret minimization
query was proposed: it does not require users to provide their
utility functions and returns a small set of tuples such that any
user’s favorite tuple in this subset is guaranteed to be not much
worse than his/her favorite tuple in the whole database. In a sense,
this query finds a small set of tuples that makes the user happy
(i.e., not regretful) even if s/he gets the best tuple in the selected
set but not the best tuple among all tuples in the database.

In this paper, we study the min-size variation of the regret
minimization query; that is, we want to determine the least tuples
needed to keep users happy at a given level. We term this problem
as the α-happiness query where we quantify the user’s happiness
level by a criterion, called the happiness ratio, and guarantee
that each user is at least α happy with the set returned (i.e., the
happiness ratio is at least α) where α is a real number from 0
to 1. As this is an NP-hard problem, we derive an approximate
solution with theoretical guarantee by considering the problem
from a geometric perspective. Since in practical scenarios, users
are interested in higher happiness levels (i.e., α is closer to 1),
we performed extensive experiments for these scenarios, using
both real and synthetic datasets. Our evaluations show that our
algorithm outperforms the best-known previous approaches in
two ways: (i) it answers the α-happiness query by returning
fewer tuples to users and, (ii) it anwsers much faster (up to two
orders of magnitude times improvement for large α).

I. INTRODUCTION

A database system usually contains millions of tuples and

an end user may be interested in only some of them. In

order to assist a user’s decision making, we need queries

that obtain a small representative subset of tuples from a

large database instead of asking the user to scan the whole

database. Such queries can be considered as multi-criteria

decision making problems [21], [22], [24]. An example is the

traditional top-k query [21], [22], where a user provides her

preference function, called the utility function, and an integer

k (i.e., the output size). Based on the user’s utility function,

the utility of each tuple for this user can be computed. A

high utility indicates that the corresponding tuple is preferred

by the user. The output of a top-k query is the k tuples

with the highest utilities. If the user’s utility function is not

known, the skyline query can be applied [7]; instead of asking

for a utility function, it uses the “dominance” concept. A

tuple p is said to dominate another tuple q if p is not worse

than q on each attribute and p is better than q on at least

one attribute. Intuitively, p will have a higher utility than q
w.r.t. all monotonic utility functions. Tuples which are not

dominated by any other tuples are returned in the skyline

query. Unfortunately, the output size of a skyline query can be

large (at worst the whole database). Motivated by this, a novel

query called the regret minimization query [16] was proposed

recently to overcome the deficiencies of both the top-k query

(which requires the users to specify their utility functions) and

the skyline query (which might have a large output size).

Informally, a regret minimization query computes a small

set of tuples that makes the users happy (some papers use the

term not regretful) without asking the users for their utility

functions. The happiness level of each user is quantified as

the happiness ratio of the user. Specifically, given a set of

tuples, a user is x% happy with the set if the highest utility

of tuples in the set is at least x% of the highest utility of all

tuples in the whole database. In this case, the happiness ratio

of the user is x%. Clearly, the happiness ratio is a value from

0 to 1. The larger the happiness ratio, the happier the user.

Two versions of regret minimization queries were studied in

the literature: (1) the min-error version (also known as the

k-regret query) [16]: it maximizes the happiness level (i.e.,

minimizes the regret level) of each user while guaranteeing

the output size is at most k; (2) the min-size version [3], [14]:

it minimizes the output size while guaranteeing the happiness

ratio of each user is at least α. Depending on the search needs

of users, different versions of regret minimization queries can

be applied. In this paper, we focus on the min-size version of

regret minimization, which we term as the α-happiness query.

Consider the following car database application. Assume

that Alice attempts to buy a car from a car database where

each car is represented by two attributes, namely horse power

(HP) and miles per gallon (MPG). To assist Alice for making

the decision, she should be provided with cars that she is

potentially interested in (e.g., cars with high utilities if we

know Alice’s utility function). However, in practice, it is

difficult for Alice to provide her utility function explicitly

(hence, we cannot use a top-k query). Alternatively, we can

approach this problem as an α-happiness query: Alice specifies

an α value (which is easier for her to do), which represents

the least happiness level she expects. In practice, Alice can

set α to be at least 0.9 [14], which means that she wants a set

of tuples whose highest utility is at least 90% of the highest

utility of all tuples in the database. Then, an α-happiness query

returns a set of tuples from the database, with size as small as



possible, so that Alice will be satisfied with the returned set

(since the happiness ratio is at least α as specified by Alice).

In practical scenarios, users are interested in achieving high

happiness in α-happiness queres. For example, when buying a

car/house, which is one of the big purchases in our life, a user

may want to find a car/house which is as close to his/her ideal

one as possible by only examining a few options. Otherwise,

the user might feel regretful (i.e., not happy) for not buying

a better one for a long time. The best-known method for the

α-happiness query is CORESETHS [14]. Unfortunately, when

we experimentally evaluated CORESETHS for large α (e.g.,

α approaches 1), it experienced a long query time. This is

because the core of CORESETHS relies on sampling a large

number of utility functions to guarantee high happiness: the

larger the happiness level a user requires, the more utility

functions have to be sampled and the more time is needed to

construct the solution. In particular, its running time is propor-

tional to 1
(1−α)O(d) , which becomes prohibitive when α is close

1 (even for a small number of attributes d). Different from

CORESETHS, we propose a novel method, CONE-GREEDY,

which removes the dependence on 1
(1−α)O(d) . In particular,

our experimental evaluation showcased that when users require

high happiness, our method’s running time decreases.

Note that a common characteristic of all approaches solving

the α-happiness query is that the output size increases when

α becomes larger. The output size represents the effort that a

user needs to spend to make a decision (since a user has to

examine the output to find the products s/he is interested in). A

further advantage of our method is that it consistently returned

solutions of smaller sizes empirically among all competitor

algorithms, which effectively makes the user decision easier.

Our major contributions are summarized as follows:

• We provide a novel geometric interpretation of the α-

happiness query, which has not been considered before.

• We propose a novel algorithm to answer the α-happiness

query. Our algorithm enjoys a bounded output size and

is not sensitive to α in the way previous studies have.

• We present extensive experiments on both synthetic and

real datasets, demonstrating our superiority. Under some

practical settings, our method returns 30% to 80% less

points than existing ones (e.g., existing methods can

output more than 500 points, which is too large) while

achieving two orders of improvements in running time

(e.g., they take half an hour while we finish in seconds).

Organization. The formal definition of the α-happiness query

and its NP-hardness could be found in Section II. In Sec-

tion III, we interpret the problem in a geometric way and

show an overview of our solution. The proposed algorithm

is described Section IV and related works are discussed in

Section V. Finally, the experimental evaluation is presented in

Section VI while conclusions appear in Section VII.

II. PROBLEM DEFINITION

We are given a set D of n tuples (i.e., |D| = n) in a d-

dimensional space (i.e., each tuple in D is described by d
attributes). We assume that d is a fixed constant in this paper.

TABLE I
CAR DATABASE AND UTILITIES

Car HP MPG f0.4,0.6(p) f0.2,0.8(p) f0.7,0.3(p)

p1 0.2 1 0.68 0.84 0.44

p2 0.6 0.9 0.78 0.84 0.69

p3 0.9 0.6 0.72 0.66 0.81

p4 1 0.2 0.52 0.36 0.76

p5 0.35 0.2 0.26 0.23 0.305

p6 0.3 0.6 0.48 0.54 0.39

The i-th dimensional value of a tuple p is denoted by p[i]
where i ∈ [1, d]. The norm of p (the L2-norm) is denoted by

‖p‖. In the rest paper, we also call each tuple as a point in a d-

dimensional space. Without loss of generality, we assume that

each dimension is normalized to (0, 1], such that there exists

a point p in D and p[i] = 1 for each i ∈ [1, d] and we assume

that a larger value on each dimension is more preferable to all

users. Recall that in the car database, each car is associated

with 2 attributes, namely HP and MPG; in the example

shown in Table I, the car database D = {p1, p2, p3, p4, p5, p6}
consists of 6 points with the normalized attribute values.

Assume that user’s happiness is measured by an unknown

utility function, which is a mapping f : Rd
+ → R+. Denote the

utility of a point p w.r.t. f by f(p). A user wants a point which

maximizes the utility w.r.t. his/her utility function. Given a

utility function f and S ⊆ D, we define the maximum utility

of S w.r.t. f , denoted by Umax(S, f), to be maxp∈S f(p).
Clearly, for each S ⊆ D, Umax(S, f) ≤ Umax(D, f).

We define two important terms, namely the function-wise

ratio (happiness ratio) and the minimum happiness ratio.

Definition 1 (Function-wise Ratio): Given a set S ⊆ D
and a utility function f , the function-wise ratio of S w.r.t. f ,

denoted by fRatio(S, f), is defined to be
Umax(S,f)
Umax(D,f) .

The value of a function-wise ratio ranges from 0 to 1.

Intuitively, when the maximum utility of S is closer to the

maximum utility of D, the function-wise ratio of S w.r.t. the

user’s utility function becomes larger, which indicates that the

user feels more satisfied with S. Thus, the function-wise ratio

is also called the happiness ratio. Unfortunately, in reality, it

is difficult to obtain the user’s exact utility function. Thus, in

this paper, we assume that all users’ utility functions belong

to a function class, denoted by FC. A function class is defined

to be a set of functions which share some common character-

istics. An example is the class of linear utility functions [16]

(to be defined shortly). The minimum happiness ratio of a set

S is defined over a function class FC, which can be regarded

as the worst-case function-wise ratio w.r.t. a function in FC.

Definition 2 (Minimum Happiness Ratio): Given a set S ⊆
D and a function class FC, the minimum happiness ratio of

S over FC is defined to be minf∈FC fRatio(S, f).
Example 1: Assume that FC consists of 3 utility functions,

namely f0.4,0.6, f0.2,0.8 and f0.7,0.3 where fa,b(p) = a ×
p[1] + b × p[2]. Consider p1 in Table I. Its utility w.r.t.

f0.4,0.6 is f0.4,0.6(p1) = 0.4 × 0.2 + 0.6 × 1 = 0.68.

The utilities of other points in D are computed similarly

in Table I. Given S = {p1, p4}, the maximum utility of S
w.r.t. f0.4,0.6 is Umax(S, f0.4,0.6) = maxp∈S f0.4,0.6(p) =



f0.4,0.6(p1) = 0.68. Similarly, Umax(D, f0.4,0.6) is 0.78.

Then, fRatio(S, f0.4,0.6) =
Umax(S,f0.4,0.6)
Umax(D,f0.4,0.6)

= 0.68
0.78 = 0.8718.

Similarly, fRatio(S, f0.2,0.8) = 1 and fRatio(S, f0.7,0.3) =
0.9383. The minimum happiness ratio of S over FC is

minf∈FC fRatio(S, f) = min{0.8718, 1, 0.9383} = 0.8718.

In general, the utility functions in FC could have an

arbitrary distribution. For the ease of illustration, we first

assume that each utility function in FC is equally probable to

be used by a user. However, we will later relax this assumption

in Section IV-C2 and show that our techniques can be easily

applied when arbitrary types of distributions are considered.

As in [3], [14]–[16], here, we assume that FC is the class of

linear utility functions due to its popularity in modeling user

preferences. Other classes of utility functions are considered in

[12], [20] and are not the focus of this paper. Specifically, each

linear utility function f in FC is associated with a utility vector

u which is a d-dimensional non-negative real vector where

u[i] denotes the importance of the i-th dimension in user’s

preference and it can be expressed as: f(p) =
∑d

i=1 u[i]p[i] =
u·p. Without loss of generality, we assume that ‖u‖ = 1. Thus,

we have FC = {f | f(p) = u ·p where u ∈ R
d
+ and ‖u‖ = 1}.

In the rest paper, we also refer each function f in FC by its

utility vector u. Denote the minimum happiness ratio of S
over the class of linear utility functions FC by minHap(S).

Since FC contains an infinite number of linear utility

functions, it is not easy to compute minHap(S) for a given S
directly according to Definition 2. Instead, [17] showed that

the minimum happiness ratio minHap(S) can be computed in

a tractable way using the “point-wise ratio”, pRatio, defined

below. We will use the pRatio in Section III-A to interpret the

α-happiness query from a novel geometric perspective.

For each point p ∈ D, we define the orthotope set of p,

denoted by Orth(p), to be a set of 2d d-dimensional points

constructed by {0, p[1]}×{0, p[2]}×...×{0, p[d]}. That is, for

each i ∈ [1, d], the i-dimensional value of a point in Orth(p)
is equal to either 0 or p[i]. Given S ⊆ D, we define the

orthotope set of S, denoted by Orth(S), to be
⋃

p∈S Orth(p).
Given S ⊆ D, let Conv(S) be the convex hull (the smallest

convex set) of the orthotope set of S [17]. Moreover, a point

p ∈ Conv(S) is said to be an extreme point of Conv(S) if p
is not in the convex hull of the other points in Orth(S).

Example 2: Consider the example in Table I where D =
{p1, p2, p3, p4, p5, p6}. For the ease of presentation, we visu-

alize D in Figure 1 where the X1 and X2 coordinate represent

HP and MPG, respectively. The points in Orth(p2)(= {p2,

p′2, p′′2 , O}) are shown in Figure 1 where p′2 = (0, p2[2]),
p′′2 = (p2[1], 0) and O is the origin. Similarly, Orth(p3) is

shown in the same figure. Given S = {p2, p3}, we define

Orth(S) to be Orth(p2) ∪ Orth(p3). Then, the convex hull

Conv(S) is shown in Figure 2. Note that there are 5 extreme

points in Conv(S), namely O, p′2, p2, p3 and p′′3 , each of which

is not in the convex hull of the other points in Orth(S).

Definition 3 (Point-wise Ratio): Given a set S of points in D
and a point p ∈ D, the point-wise ratio of p w.r.t. S, denoted

TABLE II
FREQUENTLY USED NOTATIONS

Notation Meaning

D The set of d-dimensional points with |D| = n

D′ The α-shrunk set of D

Umax(S, f) The maximum utility of S w.r.t. f

fRatio(S, f) The function-wise ratio of S w.r.t. f

pRatio(S, p) The point-wise ratio of p w.r.t. S

FC The class of linear utility functions

minHap(S) The minimum happiness ratio of S over FC
Conv(S) The convex hull of the orthotope set of S

Cone(V, o)
The conical hull of o w.r.t. V , i.e., Cone(V, o) =
{p ∈ R

d| p = o+
∑

v∈V wv where w ≥ 0}

Fp
A set of utility functions whose utility

score is maximized by p over points in D′

Vp Vp = {p′ − p| for each extreme point p′ of Conv(D′)}
Ext(p) The set of extreme vectors of p

S The surface of a unit sphere in R
d
+

Cp
A partial spherical surface of S, Cone(Ext(p), O) ∩ S

(also called the conical hull of p if S is clear)

Vol(p)(Ṽol(p)) The (estimated) volume of the conical hull Cp

̺p(S)( ˜̺p(S)) The (estimated) marginal volume of p

St The set of points selected after the t-th round

pt The point selected in the t-th round

θt (θ̃t) min
p∈D\St−1

1
̺p(St−1)

( min
p∈D\St−1

1
˜̺p(St−1)

)

N The sampling size

hp The hyperplane of p defined based on Ext(p)

by pRatio(S, p), is defined to be min{ ‖p′‖
‖p‖ , 1}, where p′ is the

intersection between the ray Op, which starts from the origin

O and passes p, and the surface of Conv(S).
Lemma 1 (Computing Minimum Happiness [17]): Given a

set S ⊆ D, we have minHap(S) = minp∈D pRatio(S, p).
Example 3: Given p1 and S = {p2, p3} in Figure 3,

the intersection between Op1 and the surface of Conv(S) is

denoted by p′1. pRatio(S, p1) is computed to be
‖p′

1‖
‖p1‖

= 0.9.

Similarly, we can compute pRatio(S, p4) to be 0.9 and the

point-wise ratios of the remaining points in D are 1. According

to Lemma 1, minHap(S) = minp∈D pRatio(S, p) = 0.9.

After knowing how to compute the minimum happiness

ratio minHap(·), we formally define the α-happiness query.

Problem 1 (The α-Happiness Query): Given a real number

α ∈ [0, 1], the α-happiness query returns a set S ⊆ D with

minHap(S) ≥ α such that the size of S, i.e., |S|, is minimized.

If there are multiple sets with the minimum size, an α-

happiness query returns one of them. Note that a user does

not need to specify his/her utility function in the α-happiness

query. Since the minimum happiness ratio minHap(S) is

defined to be the worst-case happiness ratio w.r.t. any utility

function in the function class FC, if minHap(S) ≥ α for a

given set S, for each user, s/he will be at least α happy with

S no matter which utility function s/he uses from FC. We

state the NP-hardness of the α-happiness query in Theorem 1.

Table II summarizes the frequently used notations in this paper.

Theorem 1: The α-happiness query is NP-Hard.

Proof. The proof is similar to the NP-hardness proof of the

k-regret query since their decision problems are the same. We

refer the readers to [3], [8], [9] for the complete proof.
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III. GEOMETRIC PROPERTIES

In this section, we introduce the geometric properties based

on which we build our solution. Specifically, in Section III-A,

we introduce the spatial α-coverage problem, which we prove

to be geometrically equivalent to the α-happiness query. Then,

we present an overview of our solution for solving the spatial

α-coverage problem in Section III-B.

A. Equivalence to Spatial Coverage

Given a real number α ∈ [0, 1], we define the α-shrunk set

of D, denoted by D′
α , to be {p′α|p

′
α = αp, ∀p ∈ D} where p′α

is the α-shrunk point of p. When α is clear in the context, we

denote D′
α by D′ and denote a point in D′ by p′. Intuitively, D′

is a proportionally shrunk set of D. For example, let α = 0.9
and D is shown in Table I. The α-shrunk set D′ (shown in

cross points) of D (shown in dot points) is drawn in Figure 4

where each point in D′ is a proportionally scaled point in

D. Similarly, Conv(D′) can be regarded as a proportionally

shrunk convex hull of Conv(D) as shown in Figure 4.

We formally define the spatial α-coverage problem, which

provides us a novel interpretation of the α-happiness query.

Problem 2 (The Spatial α-Coverage Problem): Given α ∈
[0, 1], the spatial α-coverage problem finds a minimum size

subset of D, denoted by S, such that for each point p′ ∈ D′,

p′ is inside Conv(S) where D′ is the α-shrunk set of D.

We say that Conv(S) covers Conv(D′) if the above condi-

tion is satisfied since Conv(D′) is “contained” inside Conv(S).
For example, in Figure 5 where S = {p2, p3}, Conv(S) covers

Conv(D′), i.e., for each p′ in D′, p′ is inside Conv(S).
We show our first interesting result that the α-happiness

query and the spatial α-coverage problem are equivalent in

Theorem 2. Due to the lack of space, the proofs of Theo-

rems/Lemmas in this paper can be found in the appendix.

Theorem 2: Given S ⊆ D and α ∈ [0, 1], S is a feasible

solution of the spatial α-coverage problem on D if and only

if S is a feasible solution of the α-happiness query on D.

Example 4: Given α = 0.9 and S = {p2, p3}, S is a

feasible solution of the spatial α-coverage problem on D since

Conv(S) covers Conv(D′) as shown in Figure 5. According

to Theorem 2, S is also a feasible solution of the α-happiness

query on D, which conforms with our previous computation

in Example 3 where minHap(S) = 0.9 ≥ α.

Theorem 2 provides a straightforward way for us to interpret

the α-happiness query. The geometric explanation of the α-

happiness query is obviously more intuitive than its original

algebraic explanation. Since the α-happiness query is an NP-

hard problem, it is also computationally expensive to find an

Fig. 6. Extreme vector Fig. 7. Function set

optimal solution for the spatial α-coverage problem. In the

following subsection, we show a different view of the spatial

α-coverage problem, which helps us to determine a solution

efficiently. Based on this result, we will develop our algorithm

in Section IV for answering the α-happiness query.

B. Interesting Properties

Before we go through the details, we first introduce an

overview of our solution to the spatial α-coverage problem.

Consider a point p in D. Let Fp be a set of utility functions

such that for each f ∈ Fp, f(p) ≥ maxp′∈D′ f(p′) where D′

is the α-shrunk set of D. Intuitively, Fp is a set of utility

functions whose utilities are maximized by p over the points

in D′ (or simply, the utilities are maximized by p and p has

the maximum utility if D′ is clear in the context). Before we

formally define Fp, we first show how we can solve a spatial

α-coverage problem effectively using the aforementioned Fp.

Lemma 2: Given α ∈ [0, 1], the function set Fp for each

point p ∈ D and a set S ⊆ D, if
⋃

p∈S Fp = FC, Conv(S)
covers Conv(D′) where D′ is the α-shrunk set of D.

According to Theorem 2 and Lemma 2, a set S is a valid

solution for the α-happiness query if
⋃

p∈S Fp = FC.

Intuitively, given a point p in D, the (uncountable) number

of utility functions in Fp can be regarded as the importance

of p. A point with a higher importance indicates that this point

has the maximum utility w.r.t. more utility functions. Based

on this observation, our algorithm has two major steps. Firstly,

we compute the function set Fp for each p in D and compute

its importance. Secondly, we leverage a greedy algorithm to

select points to S according to the importance in the first step

until
⋃

p∈S Fp = FC. In the following, we first present the

formal definition of Fp and then provide the procedure for

computing the desired Fp. The computation of its importance

and the greedy strategy will be presented later in Section IV.

1) Preliminary Concepts: Let D be the given dataset and

D′ be its corresponding α-shrunk set. We first introduce a few

useful notations and geometric concepts for defining Fp.



Given a point p in D, let Vp = {p′ − p| for each extreme

point p′ of Conv(D′)}. For example, given p2 in Figure 6, the

vector set Vp2 , which is constructed by creating a vector for

each extreme point of Conv(D′), is shown in solid vectors.

Given a vector set V and a apex o, we define the conical hull

of o w.r.t. V , denoted by Cone(V, o), be the set of all vectors

which are centered at o and are the conical combination [13] of

vectors in V , i.e., Cone(V, o) = {p ∈ R
d| p = o+

∑
v∈V wv

where w ≥ 0}. Intuitively, Cone(V, o) can be regarded as

a convex cone with apex o. The boundaries of Cone(V, o)
are some unbounded facets, each of which is enclosed by

some vectors in V and is a flat surface that forms a part of

the boundary of Cone(V, o). For example, given the previous

defined vector set Vp, we can define a special conical hull

Cone(Vp, p) for each p in D. An example is shown as follows.

Example 5: Consider p2 and the corresponding Vp2 in

Figure 6. We draw Cone(Vp2 , p2) in the shaded region in

the figure, which is the set of all vectors with the form

p2 +
∑

v∈Vp
wv where w ≥ 0. In this 2-dimensional example,

the boundaries of Cone(Vp2 , p2) are two unbounded facets,

i.e., the rays shooting from p2 to p′1 and from p2 to p′3.

Intuitively, Cone(Vp, p) can be regarded as a conical hull

that constrains the maximum visible range from p to Conv(D′).
For example, in Figure 6, Cone(Vp2 , p2) constrains the maxi-

mum visible range from p2 to Conv(D′) since along any other

direction (ray), p2 cannot “see”(reach) any point in Conv(D′)
(where Conv(D′) is the same as the one drawn in Figure 5).

Consider a boundary facet of F of the Cone(Vp, p) defined

above. The facet F is said to be contained by a hyperplane

if (1) for each point q on F , q is also on this hyperplane

and (2) for each q in Cone(Vp, p) but not on F , q is below the

hyperplane. In geometry, each boundary facet of a conical hull

is contained by a unique hyperplane. Then, for each boundary

facet F of Cone(Vp, p), we define an extreme vector of p to

be the unit vector perpendicular to the hyperplane containing

F . Denote the set of all extreme vectors of p by Ext(p).
Example 6: Consider Cone(Vp2 , p2) in Example 5. The ray

shooting from p2 to p′1 is a boundary facet of Cone(Vp2 , p2),
which is contained by the hyperplane (i.e., a line in this 2-

dimensional example) passing through p′1 and p2. Since v1
is a vector perpendicular to this hyperplane, v1 is an extreme

vector of p2. Another extreme vector, namely v2, is constructed

similarly. Thus, we have Ext(p2) = {v1, v2}.

2) Function Set: Based on the concepts introduced above,

we are ready to define the function set Fp formally, which is

a set of utility functions whose utilities are maximized by p.

Definition 4 (Function Set): Given p in D and its extreme

vectors Ext(p), we define the function set of p, denoted by

Fp, to be {f ∈ FC| f(p) = u · p and u ∈ Cone(Ext(p), O)}.

Lemma 3: If f ∈ Fp, f(p) ≥ f(p′) for each p′ ∈ D′.

Example 7: In Example 6, Ext(p2) is computed to be

{v1, v2}. The conical hull Cone(Ext(p2), O) is shown in the

shaded region in Figure 7, which is the set of all vectors with

the form w1v1 + w2v2 where w1, w2 ≥ 0. By Definition 4,

we define Fp2 to be the functions whose utility vectors are

O

v2
v1 v3

Cp

Fig. 8. Conical hull
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Fig. 9. Union of hulls

in Cone(Ext(p2), O). Then, according to Lemma 3, if f is a

function in Fp2 , we have f(p2) ≥ f(p′) for each p′ ∈ D′.

Figure 8 shows another example of Cone(Ext(p), O) where

Ext(p) = {v1, v2, v3} for some p in a 3-dimensional space.

Note that Fp is uniquely determined by the extreme vectors

in Ext(p). Thus, we compute Fp by computing the correspond-

ing Ext(p). Formally, the procedure for computing Fp is:

1) We compute the set of all extreme points of Conv(D′);
2) We define Vp = {p′ − p| for each extreme point p′ of

Conv(D′)} and construct the conical hull Cone(Vp, p);
3) We obtain the set Ext(p) and each unit extreme vector

in it is perpendicular to a boundary facet of Cone(Vp, p).

Time complexity. Let m be the maximum extreme vectors of a

point in D and B′ be the set of all extreme points of Conv(D′).
We can compute the set B′ of extreme points in O(n|B′|) time

using linear programming (LP) [10], [11] (without having to

construct the exact Conv(D′)). For each p in D, we construct

the vector set Vp in O(|B′|) time and obtain Ext(p) in O(m)
time [5] since there are O(m) boundary facets in Cone(Vp, p).
Thus, the total time complexity is O(n|B′|+ nm).

IV. ALGORITHM

According to the solution overview described in Section III,

our algorithm consists of two major steps. Firstly, we compute

Fp (i.e., compute the extreme vectors Ext(p) that define Fp)

and compute the importance of Fp for each p in D. Secondly,

we employ a greedy algorithm based the importance computed

in the first step and determine a set S ⊆ D such that

∪p∈SFp = FC. In the following, we first show how we

quantify the importance of each Fp in Section IV-A and then

present the algorithms in Section IV-B and Section IV-C.

A. Importance of Function Set

Recall that each utility vector has its norm equal to 1. Then,

we interpret that each utility vector lies on the surface of a

sphere, denoted by S, in the positive quadrant with radius 1

centered at the origin. That is, S = {u ∈ R
d
+| ‖u‖ = 1}.

In Section III, Fp is defined to be a set of utility functions,

whose utility vectors are in the conical hull Cone(Ext(p), O).
In other words, Fp can be represented as a partial spherical

surface of S, i.e., Cone(Ext(p), O)∩S. With a slight abuse of

terminology, when S is clear in the context, we also call the

spherical surface Cone(Ext(p), O)∩S as the conical hull of p,

denoted by Cp. Clearly, Cp is also uniquely defined by Ext(p).
If there are more vectors in Cp, p is more important since it has

the maximum utility w.r.t. more functions. However, since the



number of vectors in Cp is uncountable, we use the “surface

area” (i.e., the (d − 1)-dimensional measure) to quantify the

importance of a point p. Specifically, we define the volume

of a conical hull of p (or simply, the volume of p), denoted

by Vol(p), to be
Area(Cp)
Area(S) , where Area(·) denotes the surface

area. The volume of a set S, denoted by Vol(S), is defined

to be
Area(∪p∈SCp)

Area(S) . It is easy to see that Vol(S) ∈ [0, 1]. The

following lemma shows that our goal of finding a set S with

∪p∈SFp = FC is equivalent to finding a S with Vol(S) = 1.

Lemma 4: ∪p∈SFp = FC if and only if Vol(S) = 1.

Example 8: Consider the 3-dimensional example in Fig-

ure 8. S is drawn in solid lines, which is the set of all utility

vectors with norm equal to 1. Assume that Cp is formed by

3 extreme vectors, i.e., Ext(p) = {v1, v2, v3}. Cp can be

regarded as a partial spherical surface of S, shown in shaded.

The volume Vol(p) is computed to be the surface area (i.e., the

2-dimensional measure) of Cp divided by the surface area of S.

Consider Figure 9 where S is covered by the union of 6 conical

hulls. If S is the corresponding set of points, Vol(S) = 1.

To find the desired set S with Vol(S) equal to 1, a crucial

operation is to compute Vol(S) for a given S. We first treat the

computation of Vol(S) as a black box and present a conceptual

algorithm in Section IV-B. Since the exact (actual) volume

Vol(S) is time-consuming to compute especially in a high

dimensional space, we present an algorithm which utilizes the

approximate (estimated) volume Ṽol(S) in Section IV-C.

B. The Conceptual Algorithm

In this section, we first treat the computation of Vol(S)
for a given set S of points as a black box. A natural

greedy algorithm works as follows. The algorithm adds points

iteratively to S, initialized to be an empty set. In each iteration,

the point with the largest marginal volume is inserted into S
until Vol(S) = 1. The marginal volume of a point p is defined

to be Vol(S ∪ {p}) - Vol(S). Intuitively, a large marginal

volume of p indicates that the probability that a utility function

is maximized by p but not points already in S is large. Let T
be the total number of iterations. For t ∈ [1, T ], St represents

the set of points selected so far after the t-th round. Let pt
be the point selected in the t-th round. Denote the marginal

volume of p by ̺p(S) = Vol(S ∪ {p})− Vol(S). In addition,

let θt = minp∈D\St−1

1
̺p(St−1)

. The pseudocode is shown in

Algorithm 1, whose upper bound is given in Theorem 3.

Theorem 3: Denote the set returned by Algorithm 1 by ST

and the optimal set with volume equal to 1 by S∗.

|ST | ≤ (1 + lnmin{k1, k2, k3})|S
∗|

where k1 = maxp∈D,r∈[1,T ]

{
̺p(S0)
̺p(Sr)

: ̺p(Sr) > 0
}

, k2 = θT
θ1

and k3 = 1/(1− Vol(ST−1)).

C. The Cone-Greedy Algorithm

Unfortunately, computing the exact value of Vol(S) (which

is not necessarily convex) is very expensive especially in a

high dimensional space. Thus, we utilize a sampling method to

estimate the (marginal) volume of a conical hull. Specifically,

Algorithm 1 The Conceptual Algorithm

Input: D, α
Output: A set ST ⊆ D

1: S0 ← ∅, t← 0
2: for each point p ∈ D do

3: Cp ← the conical hull of p, Vol(p)←
Area(Cp)

Area(S)

4: end for
5: while Vol(St) 6= 1 do
6: t← t+ 1
7: pt ← argmaxp∈D\St−1

̺p(St−1), St ← St−1 ∪ {pt}
8: end while
9: T ← t

10: return ST
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given a conical hull, we generate N unit samples from a d-

dimensional uniform distribution and determine the number of

samples inside this conical hull (i.e., the samples which are

the conical combination of the extreme vectors that defines the

conical hull). Then, the volume of this conical hull is estimated

to be the ratio of the number of samples locating inside the

conical hull to the total number of samples, N .

We propose an algorithm, called CONE-GREEDY, for an-

swering the α-happiness query, which works in a similar

manner as Algorithm 1. The only difference is that we consider

the estimated volumes instead of the exact volumes. With

a slight abuse of notations, we let T be the total number

of iterations. For each t in [1, T ], St denotes the set of

points selected so far after the t-th round and let pt be the

point selected in the t-th round. Note that T , St and pt in

CONE-GREEDY might be different from those in Algorithm 1.

We denote the estimated (marginal) volume p by Ṽol(p)

( ˜̺p(S) = Ṽol(S ∪ {p}) − Ṽol(S)) and the actual (marginal)

volume of p by Vol(p) (̺p(S) = Vol(S ∪ {p})−Vol(S)). Let

θ̃t = minp∈D\St−1

1
˜̺p(St−1)

and θt = minp∈D\St−1

1
̺p(St−1)

.

The pseudocode of CONE-GREEDY is shown in Algorithm 2.

CONE-GREEDY can also be interpreted in a set-cover man-

ner. We say that a sample s is covered by Cp if s lies inside

the conical hull. The greedy algorithm starts with an empty

set, and it adds points to the set iteratively until all samples

are covered by some conical hulls corresponding to the points

in the set. In each iteration, it adds the point whose conical

hull covers the largest number of uncovered samples (i.e., the

point which has the largest estimated marginal volume).

Example 9: Consider the example in Figure 10, which are

the conical hulls of points in Table I with α = 0.9. In this 2-

dimensional example, each Cp is an “arc” on S. We generate

6 samples (i.e., N = 6), drawn in the diamonds in the figure.

The sample s1 is inside Cp2 while s2 is not inside Cp2 . Since

there are 4 out of 6 samples lying inside Cp2 , the estimated



Algorithm 2 The CONE-GREEDY Algorithm

Input: D, α, confidence parameter δ, error parameter ǫ
Output: A set ST ⊆ D

1: Create N samples from d-dimensional uniform distribution
2: S0 ← ∅, t← 0
3: for each point p ∈ D do

4: Cp ← conical hull of p, Ṽol(p)← the estimated volume of p
5: end for
6: while Ṽol(St) 6= 1 do
7: t← t+ 1
8: pt ← argmaxp∈D\St−1

˜̺p(St−1), St ← St−1 ∪ {pt}
9: end while

10: T ← t
11: return ST

volume of p2, Ṽol(p2), is 4
6 = 0.666. For comparison, the

actual volume of p2, Vol(p2), can be computed to be 0.664.

CONE-GREEDY on this example works as follows. In each

iteration, it selects the point which has the largest estimated

marginal volume, or equivalently, the point whose conical hull

covers the largest number of uncovered samples. Specifically,

CONE-GREEDY first selects p2, whose conical hull covers 4

samples. The remaining 2 samples are covered by Cp3 , which

is inserted to the solution S next. Finally, S is {p2, p3}.

A basic operation of CONE-GREEDY is that given a sample

s and a conical hull Cp, we determine whether s is in Cp,

which we call the conical hull location problem. The conical

hull location problem needs to be solved for each sample

and each conical hull combination. Thus, it is important to

solve it efficiently, which we will discuss in Section IV-C1.

The theoretical and complexity analysis of CONE-GREEDY are

presented in Section IV-C2 and Section IV-C3, respectively.

1) The Conical Hull Location Problem: We focus on the

conical hull location problem in this section: given a sample

s and a conical hull Cp, is s inside Cp, denoted as “s ∈ Cp”?

According to the definition of conical hulls, s ∈ Cp if and

only if s is a conical combination of the extreme vectors

that defines Cp. A naive solution of determining if s ∈ Cp

is to formulate it as a linear programming (LP) problem.

However, if the number of extreme vectors is large, it is

time-consuming to solve such an LP for each sample and

each conical hull combination. In the following, we present

a necessary condition for the conical hull location problem.

Given a conical hull Cp specified by m unit extreme vectors,

namely v1, . . . , vm (‖vi‖ = 1), we define a hyperplane for

p, denoted by hp. In geometry, a hyperplane is uniquely

defined by its normal and offset. Specifically, the normal of

hp, denoted by np, is defined to be the unit vector in the same

direction as 1
m

∑m
i=1 vi and the offset of hp, denoted by cp,

is defined to be minj∈[1,m] np · vj . If a point is on hp, its dot

product with np is equal to cp. Assume that the ray shooting

from O in the direction of vi intersects hp at v′i. When the

context is clear, we simply say that vi intersects hp at v′i.
Similarly, we say that a sample s intersects hp at s′ if the

ray shooting from O to s intersects hp at s′. The necessary

condition for determining if s ∈ Cp is summarized as follows.

Lemma 5: If s ∈ Cp, ‖s′‖ ≤ 1.

According to Lemma 5, if ‖s′‖ > 1, we can directly

conclude that s 6∈ Cp without solving the expensive LP.

Example 10: Consider Figure 11 where S (the set of all

utility vectors with norms equal to 1) is shown. The conical

hull Cp2 , defined by extreme vectors v1 and v2, is drawn in

the figure. According to the construction above, we can define

the hyperplane hp2 . The intersections between hp2 and both

v1 and v2 (which are in Cp2 ) have norms at most 1. Consider

another intersection, denoted by s′, between hp2 and a sample

s. Since ‖s′‖ > 1, we conclude s 6∈ Cp2 by Lemma 5.

In short, we solve the conical hull problems in three steps:

1) Transform each Cp to its corresponding hyperplane hp;

2) For each sample s, we determine the set of hyperplanes

whose intersections with s has norm at most 1 and they

correspond to the candidate conical hulls containing s;

3) For each candidate hyperplane hp, we check whether the

corresponding Cp contains s by solving it as an LP.

Time complexity: Assume that Cp is defined by m extreme

vectors. Determining whether s ∈ Cp can be formulated as an

LP with m variables and d constraints, which can be solved

in O(m) time in practice [6]. If the necessary condition in

Lemma 5 is satisfied, it simply takes O(1) to conclude s 6∈
Cp by checking the intersection between s and hp. Note that

the hyperplanes can be indexed using the techniques designed

for the ray shooting query [2]. Then, for each sample s, the

candidate conical hulls can be determined more efficiently.

2) Theoretical Analysis: Denote the set returned by CONE-

GREEDY by ST . We analyze the performance of CONE-

GREEDY in this section. Specifically, we prove a lower bound

on Vol(ST ) and prove upper bounds on output size |ST |.

Since we approximate Vol(ST ) by Ṽol(ST ) using sampling,

Vol(ST ) can be less than 1 even if Ṽol(ST ) = 1. Recall that

each function in FC is equally probable to be used by a user.

Given a set ST with Vol(ST ) = β where β ∈ [0, 1] for the

α-happiness query, for each user, the probability that s/he will

be at least α happy with ST is at least β. The following lemma

provides a lower bound on the actual volume Vol(ST ).
Lemma 6: Given a confidence parameter δ, a suffi-

ciently small error parameter ǫ and a sampling size N =
O(d+ln(1/δ)

ǫ2 ), with probability at least 1− δ,

Vol(ST ) ≥ 1− |ST |ǫ.

Proof Sketch. We prove the lemma with the well-known

Chernoff-Hoeffding Inequality [19] on the estimated volumes.

For lack of space, the proof appears in the appendix.

According to Lemma 6, the probability that a user will be

at least α happy with ST is at least 1−|ST |ǫ. Note that ǫ is a

parameter that we can make arbitrarily small and the size |ST |
is small in practice. Then, under practical settings, we have

|ST |ǫ < 1 and the bound is valid (i.e., Vol(ST ) ≥ 1−|ST |ǫ >
0). To verify this assumption and show the usefulness of our

algorithm, we conducted experiments in Section VI by setting

a large ǫ (i.e., we set a small sampling size N ) and show that



even this assumption is not true empirically, the output size is

still small while guaranteeing the happiness ratio.

The following lemma is a variation of Theorem 3, which

takes sampling into consideration and gives bounds on |ST |.
Lemma 7: Given a confidence parameter δ, a sufficiently

small error parameter ǫ and a sampling size N = O(d+ln(1/δ)
ǫ2 )

such that ˜̺pT
(ST−1) > ǫ, with probability at least 1− δ,

|ST | ≤ [c̃(1 + lnmin{k̃1, k̃2})]|S
∗|

where c̃ =
˜̺pT (ST−1)+ǫ

˜̺pT (ST−1)−ǫ , k̃1 = θ̃T
θ̃1

, k̃2 = 1
˜̺pT (ST−1)−ǫ , and S∗

is the optimal set with Vol(S∗) = 1.

Proof Sketch. The proof follows a similar framework as [25]

where actual volumes are considered. However, since actual

volumes are unknown (and expensive to obtain), we prove the

bounds using the estimated volumes in the sampling strategy.

The complete proof appears in the appendix.

The following lemma gives the upper bound on the output

size of CONE-GREEDY from the set-cover perspective.

Lemma 8: Given a confidence parameter δ, a suffi-

ciently small error parameter ǫ and a sampling size N =
O(d+ln(1/δ)

ǫ2 ), with probability at least 1− δ,

|ST | ≤ (1 + logN)|S∗|.

where S∗ is the optimal solution with Vol(S∗) = 1.

Proof Sketch. It is proven by the well-known approximate ratio

of the greedy algorithm for the set-cover problem.

We summarize our results in the following theorem.

Theorem 4: Given a confidence parameter δ, a sufficiently

small parameter ǫ and a sampling size N = O(d+ln(1/δ)
ǫ2 ) such

that ˜̺pT
(ST−1) > ǫ, with probability at least 1 − δ, CONE-

GREEDY returns a set ST for the α-happiness query such that

1) |ST | ≤ min{[c̃(1 + lnmin{k̃1, k̃2})], 1 + logN}|S∗|

where c̃ =
˜̺pT (ST−1)+ǫ

˜̺pT (ST−1)−ǫ , k̃1 = θ̃T
θ̃1

, k̃2 = 1
˜̺pT (ST−1)−ǫ ,

and S∗ is the optimal set with Vol(S∗) = 1;

2) Vol(ST ) ≥ 1− |ST |ǫ, i.e., for each user, the probability

that s/he will be at least α happy is at least 1− |ST |ǫ.

Proof. Directly from Lemma 6, Lemma 7 and Lemma 8.

Other distributions of FC. While we have assumed that all

functions in the class FC are equally probable to be used by a

user, the methods presented in this paper can be generalized to

other distributions of FC with the following two modifications.

Firstly, Vol(S) is defined based on the distribution of FC (e.g.,

by taking the integral over FC) instead of simply the surface

area. Secondly, when approximating Ṽol(S) by sampling, N
unit samples are generated based on the distribution of FC
instead of the d-dimensional uniform distribution.

3) Time Complexity Analysis: In Section III-B, we compute

Cp for all p in D in O(n|B′|+nm) time where B′ is the set

of all extreme points of Conv(D′) and m is the maximum

extreme vectors of a point in D. N samples can be generated

in O(N) time. For each sample s and each Cp, we check

whether s ∈ Cp, resulting in O(Nnm) time in total. The

greedy set-cover algorithm takes O(|ST |Nn) time. Thus, the

total time complexity is O(n|B′|+Nnm+ |ST |Nn).

Comparison. Compared with the existing algorithms, CONE-

GREEDY has some attractive differences. Firstly, the execution

time of CONE-GREEDY is less sensitive to large α, while

existing algorithms degrade rapidly when users require a high

happiness level (e.g., the time complexity of [14] is pro-

portional to 1
(1−α)O(d) ). Secondly, CONE-GREEDY provides

a log-factor bound on the output size by utilizing sampling

information, which has not been considered before. Finally,

different from previous approaches, the larger the happiness

level a user requires, the less time CONE-GREEDY needs

empirically. Intuitively, this is because that when α is larger,

the number of extreme vectors of a point in D tends to become

smaller, resulting in less time to solve the α-happiness query.

We will experimentally verify the last advantage in Section VI.

V. RELATED WORK

The regret minimization query was first introduced by

Nanongkai et. al in [16]. In particular, they focus only on the

k-regret query (i.e., the min-error version). Given an integer

k, a k-regret query returns a set S of at most k tuples

such that the “difference” between the maximum utility of

tuples in S and the maximum utility of tuples in the whole

dataset D is minimized. Equivalently, we can also say that

a k-regret query maximizes the happiness level of each user

(measured by how close the maximum utility in S is to the

maximum utility in D) which we quantify as maximizing the

minimum happiness ratio of users (the worst-case happiness

ratio over all users). Finding an optimal solution for a k-

regret query was proven in [3], [8], [9] to be an NP-hard

problem. Nanongkai et. al [16] proposed a space-partition

based algorithm which returns a set of tuples whose minimum

happiness ratio is lower bounded. This bound was improved

in [8], [27] which is derived based on the well-known ǫ-
kernel problem [1]. Greedy-based algorithms which construct

the solutions iteratively were proposed in [9], [16], [17], [27].

Moreover, the k-regret query was interpreted as a matrix min-

max problem in [4], which can be solved in a set-cover

manner, while user interactions were considered in [15], [26].

The min-size version of regret minimization, namely the

α-happiness query, was first considered by Agarwal et. al

in [3]. Specifically, given a real number α ∈ [0, 1], an α-

happiness query minimizes the output size while keeping the

users happy (i.e., the minimum happiness ratio is at least α).

Various algorithms were proposed to obtain a solution for

the α-happiness query and they can be categorized into the

following approaches. The first approach formulated the α-

happiness query as an ǫ-kernel problem [1] and approximate

algorithms [3], [8] were proposed to obtain a desired solution.

However, due to the large size of an ǫ-kernel, the ǫ-kernel

based approach might return a large number of tuples. The

second approach [3], [4] discretized the function space and

formulated the α-happiness query as a hitting set problem (or a

set cover problem), which provides user-controlled approxima-

tions on both the minimum happiness ratio and the output size.



More recently, Kumar et. al [14] proposed the CORESETHS

algorithm (which is included in our experimental comparison)

which combines the ǫ-kernel and hitting set approaches and

achieves better efficiency than all previous algorithms.

Some k-regret query algorithms can be modified to answer

an α-happiness query. One could set a proper k in the

theoretically bounded algorithms [8], [16], [27] so that the

lower bound on the minimum happiness ratio is at least α.

Unfortunately, the value of k set in this approach can be

extremely large. For example, to guarantee 0.95 happy on a

3-dimensional dataset, the space-partition based algorithm in

[16] has to return 1400 tuples, which is unacceptable in real

scenarios. One could also modify the greedy-based algorithms

[9], [16], [17], [27] so as to include tuples greedily until the

minimum happiness level of users is satisfied (we consider

this approach in our experiments). Similarly, solutions for the

α-happiness query can also be extended to answer the k-

regret query: using an approach discussed in [3], [14], one

can perform a binary search on different happiness ratios to

obtain a solution set whose output size is at most k.

Compared with the existing studies [3], [4], [8], [14], we

interpret the α-happiness query from a geometric perspective

and our algorithm enjoys novel theoretical bounds on the

output size. In particular, the execution times of existing

approaches are large when the users require high happiness

levels (since they have to consider a large number of utility

functions when α is large), while our algorithm, which is

less sensitive to α, can guarantee high happiness efficiently.

According to our experimental evaluations, our algorithm

performs more efficiently and effectively than previous ap-

proaches. Under practical settings, we achieve up to two orders

of improvements in running time and return the least tuples

among all methods while guaranteeing the required happiness.

There is also recent literature on multi-criteria decision

making that uses geometric concepts. Peng et. al [17] defined

a convex hull for a fixed size set of tuples in k-regret queries,

but we focus on minimizing the solution set size in α-

happiness queries. Different from them, we shrink/scale (a

concept that does not appear in [17]) each tuple in the database

according to the required happiness level so that all shrunk

tuples are inside the convex hull of the solution set. This

idea cannot be applied in [17] for k-regret queries where the

happiness level is not known in advance. Soma and Yoshida

[23] also considered a shrunk convex hull but they focused

on the multi-objective function maximization, which takes an

approximation algorithm for each single objective function as

an input. Our problem has a single objective function (which

is treated as a black box in [23]) and thus, their analysis

could not be applied to our problem. Peng and Wong [18] also

determined a set of non-overlapping conical hulls so that the

total space “covered” by those conical hulls are maximized,

while the conical hulls in our problem are overlapping. This

makes the problem more challenging: in their case, the total

coverage of conical hulls is simply the sum of the individual

coverage of each conical hull (since their conical hulls are

non-overlapping), which, however, is not true in our case.

VI. EXPERIMENTAL EVALUATION

We conducted experiments on a machine with 3.20GHz

CPU and 8GB RAM. All programs were implemented in

C/C++. Most experimental settings follow those in [3], [14].

Both synthetic and real datasets were used in our experiments.

We generated anti-correlated datasets (the most interesting

synthetic dataset where the skyline size is large) by a dataset

generator originally developed for the skyline query in [7].

Unless stated explicitly, for each synthetic dataset, the num-

ber of tuples is set to be 100,000 (i.e., n = 100,000), the

dimensionality is set to be 3 (i.e., d = 3), the sampling size

is set to be 10,000 (i.e., N = 10, 000), and α is set to be

0.99. The real datasets contain three datasets commonly used

in the existing studies. They are the Island dataset [16], the

Airline dataset [4] and the El Nino dataset [3], [9]. Island is

2-dimensional, containing 63,383 points, which characterize

geographic positions. Airline contains 5,810,462 records with

3 characterizing attributes, namely the actual elapsed time, the

distance and the arrival delay. El Nino contains 178,080 tuples

with four oceanographic attributes taken at the Pacific Ocean.

For all datasets, each attribute is normalized to (0, 1]. The

characteristics of real datasets are summarized in Table III.

According to the results reported in [16], the naive al-

gorithms adapted from top-k and skyline queries (or even

constructing the solution by randomly selecting points) can

achieve a minimum happiness ratio of around 0.9 with a small

number of points (e.g., < 10 points); thus it becomes less

interesting to minimize the output size in these cases (since the

output size is already very small). This observation conforms

with our argument in Section I that users are interested in

small sets achieving high happiness levels. Motivated by this,

in our experiments, we concentrate on α close to 1. Similar

setting was also adopted in the existing studies [3], [14].

We implemented our algorithm, CONE-GREEDY. The com-

petitor algorithms are (1) the ǫ-kernel based algorithm [3], [8],

denoted by CORESET; (2) the best performing hitting-set based

algorithm [14], denoted by CORESETHS; and (3) a variation

of the greedy algorithms, denoted by LP-GREEDY [9], [16],

[17], [27] (see Section V), which is originally designed for

the k-regret query. The implementations of CORESET and

CORESETHS are provided by the authors in [14]. Note that

theoretically, both CORESET and CORESETHS have to sample

O( 1
(1−α)O(d) ) utility functions to construct the solutions. How-

ever, in their practical implementations, the number of utility

functions they sampled is set empirically (i.e., a number much

smaller than O( 1
(1−α)O(d) )). We follow this setting and use the

reported parameters in [14] in our experiments.

Unless specified explicitly, the performance of each algo-

rithm is measured in terms of query time (i.e., efficiency) and

output size (i.e., quality). The query time of an algorithm is

the execution time of the algorithm. The output size of an

algorithm is the number of points returned by the algorithm.

Some results are plotted in log-scale for better visualization.

We first evaluate the sampling strategy in our algorithm in

Section VI-A. Then, we proceed with the experiments on the



TABLE III
REAL DATASETS

Dataset d |D|

Island 2 63,383

Airline 3 5,810,462

El Nino 4 178,080

TABLE IV
VARY N IN CONE-GREEDY

Cone-Greedy LP-Greedy CoresetHS Coreset

N 100 500 1k 5k 10k 50k 100k - - -

minHap(S) 0.980 0.981 0.987 0.990 0.990 0.990 0.990 0.990 0.991 0.991

|S| 11 14 14 15 15 15 15 19 18 45
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Fig. 12. Results on the minimum happiness ratio

synthetic and real datasets in Section VI-B and Section VI-C.

Finally, we summarize our findings in Section VI-D.

A. Effectiveness of the Sampling Strategy

In this section, we demonstrate the effectiveness of the

sampling strategy in our CONE-GREEDY algorithm.

Similar to the existing algorithms for both k-regret queries

and α-happiness queries (e.g., CORESET and CORESETHS),

which relax both the happiness ratio and the output size

simultaneously, the happiness ratio in CONE-GREEDY is guar-

anteed with a certain probability. Thus, in this section, we first

verify whether the happiness ratio is guaranteed empirically in

CONE-GREEDY. Specifically, we conducted experiments by

varying α (and fixing the sampling size to the default value)

on both the 3-dimensional synthetic dataset and the Airline

dataset in Figure 12 (other datasets are similar). We reported

the difference between the minimum happiness ratio of the

returned set S, namely minHap(S), and the required happiness

level α for each algorithm. Recall that minHap(S) is not

optimized in an α-happiness query. Thus, a larger difference

between minHap(S) and α does not mean that the solution

is of better quality. Instead, as long as the difference is non-

negative (i.e., minHap(S) ≥ α), S is a valid solution for the α-

happiness query and its quality is measured by the output size,

which will be studied shortly in later subsections. In particular,

if the happiness difference of CONE-GREEDY is non-negative,

it means that the probability that a user will be at least α
happy with S is 100%. According to the results shown in

Figure 12, CONE-GREEDY achieves comparable performance

as the existing methods and its happiness difference is non-

negative in most of the cases. In other words, the happiness

ratio can be empirically guaranteed in CONE-GREEDY.

We also studied the effect of our sampling strategy by

varying the sampling size N (and set α to be 0.99, the default

value). Equivalently, it also means that we are varying the

error parameter ǫ in the sampling strategy since they are

closely related (i.e., the larger the sampling size, the smaller

the error). The results on a 3-dimensional dataset are shown

in Table IV. When N is very small, minHap(S) can be less
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Fig. 13. Results on synthetic datasets

than (but close to) α; for example, we can achieve a 0.98

happiness ratio with only 100 samples. When N becomes

larger (i.e., ǫ becomes smaller), the estimated volume is

closer to the actual volume and thus, minHap(S) becomes

closer to α. In particular, when N ≥ 5, 000, the returned

set S achieves the required happiness level 0.99 and its size

becomes stable, i.e., the size does not increase further with

more sampling points. Compared with the competitors which

achieve the same happiness level, CONE-GREEDY outputs the

smallest number of points. Note that a large sampling size

N is useful in achieving the required happiness ratio, but

it can introduce additional time in solving the conical hull

location problems. On the other hand, a small N results in

a faster algorithm but it can also give a large error in the

estimated volume. Following the practical way of determining

the sampling size in CORESET and CORESETHS, we set the

default sampling size to be 10, 000 in our experiments since

it achieves a reasonable trade-off between the efficiency and

the effectiveness according to the results in Table IV.

B. Results on Synthetic Datasets

We evaluated our algorithm, CONE-GREEDY, on both 3-

dimensional and 4-dimensional anti-correlated datasets. The

results are presented in Figure 13(a) and (b), respectively.

When considering the running times, LP-GREEDY has the

largest execution time (e.g., 30 minutes on the 4-dimensional

dataset when α = 0.999, which is too large to be plotted

in the figure), which is also observed in [4], [14]. Besides,

we observe that CONE-GREEDY enjoys a different trend

compared to other algorithms: when α increases, most of

the other algorithms consume more time to construct the
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Fig. 14. Scalability test

solution while the times needed by CONE-GREEDY decreases.

Intuitively, this is because that when α is large, the convex

hull Conv(D′) is “close” to Conv(D) and thus, the portion

of Conv(D′), which is visible from each p, becomes small,

resulting in a small set of extreme vectors in CONE-GREEDY

and a short time to solve the conical hull location problems.

In comparison, the best-known algorithm CORESETHS is

sensitive to α and its execution time increases rapidly for

large α. For example, when α = 0.999 on the 4-dimensional

dataset, it takes CORESETHS around 500 seconds to execute,

but CONE-GREEDY only spends around 10 seconds, an order

of improvement in terms of the running time, to return the

solution. Despite the significant speedup, CONE-GREEDY also

produces the smallest solution set in all settings. For example,

CONE-GREEDY achieves 27.82% and 39.97% improvement

in terms of the output size over the best-known previous

algorithm, CORESETHS, on 3d and 4d datasets, respectively.

CORESET has the largest output size in most cases due to the

large size of an ǫ-kernel in CORESET under practical settings.

Note that given α1, α2 ∈ [0, 1] with α1 ≥ α2, a solution for

the α1-happiness query is also a solution for the α2-happiness

query (but it may not be minimal). Although solving the α1-

happiness query (and using its solution as the solution for the

α2-happiness query) might take less time in CONE-GREEDY,

we argue that it is still necessary to spend slightly more time

to solve the α2-happiness query since its solution could have a

much smaller size; e.g., the output size of the 0.95-happiness

query is smaller than half of the output size of the 0.99-

happiness query in Figure 13(a). Besides, the solution of an

α1-happiness query can be large and it may not be practical

to return them as the output. For example, the 1-happiness

query is the special case of our problem whose solution is the

set of extreme points in Conv(D). Although the solution for

a 1-happiness query is a solution for any α-happiness query

with an arbitrary α, there are 569 points in the solution set on

a 5-dimensional dataset, which is too large to return. To make

the user’s decision easier, we may want a smaller output size
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Fig. 15. Results on real datasets

by setting a smaller α. This is a typical trade-off between the

user happiness and the output size in the α-happiness query.

We evaluated the scalability of CONE-GREEDY by varying

the dimensionality d and the dataset size n in Figure 14

where other parameters are fixed to the default setting stated

at the beginning of this section. According to the results, our

algorithm scales well w.r.t. both d and n compared with the

existing algorithms in most cases and its output size is con-

sistently smaller than the output sizes of all other algorithms

in all cases. For example, on a 5-dimensional dataset, CONE-

GREEDY returns 96 points as the solution, while the output

sizes of LP-GREEDY, CORESETHS and CORESET are 180,

189 and 548, respectively. When n = 1, 000, 000, CONE-

GREEDY takes around 10 seconds to return a solution with

15 points while CORESETHS spends around 30 seconds to

find a solution set with 18 points. In other words, CONE-

GREEDY does not only return a solution with better quality

(i.e., a smaller size), it does so faster than previous approaches.

C. Results on Real Datasets

In this section, we conducted experiments on three com-

monly used real datasets. The results are shown in Figure 15.

On the 2-dimensional Island dataset (Figure 15(a)), the

output sizes of all algorithms (except for CORESET which has

the worst output size) are small when α is small. However,

when α is large, the output sizes of the competitor algorithms

become much larger than our CONE-GREEDY algorithm,

which conforms with our argument at the beginning that large

α is the case of practical interest since a small number of



points can satisfy a small happiness ratio, making it useless

to minimize the output size in this case. On the other hand,

the running time of CONE-GREEDY decreases slightly when

α increases and it runs the fastest under all values of α. In

particular, when α = 0.999, CONE-GREEDY only spends 0.56

second to execute, which is 16 times faster than LP-GREEDY.

The results on Airline are similar and they are shown in

Figure 15(b). Note that due to the large dataset size on Airline,

it takes an unnecessary long time for LP-GREEDY to return

the solution. Thus, the running time of LP-GREEDY is omitted

in the figure. According to Figure 15(b), CONE-GREEDY

outperforms CORESETHS and CORESET in both output size

and running time under all settings. For example, the output

size of CONE-GREEDY is 12.17% and 40.69% (on average)

smaller than the output sizes of CORESETHS and CORESET,

respectively. Meanwhile, CONE-GREEDY is consistently faster

than CORESETHS and CORESET under all values of α.

Finally, consider the experiments on the El Nino dataset

in Figure 15(c). Similar to the previous experiments, CORE-

SET performs poorly since it outputs much more points to

guarantee the same happiness level compared with the other

algorithms. In contrast, the output size of CONE-GREEDY is

the smallest. Moreover, although CONE-GREEDY is slightly

slower than some competitors for small α, it becomes faster

when the user requires a higher happiness ratio. In comparison,

the running times of CORESETHS and LP-GREEDY are very

sensitive to α and they become much slower than CONE-

GREEDY for large α. In particular, when α = 0.999, CONE-

GREEDY achieves a 30 times improvement in running time

compared with both CORESETHS and LP-GREEDY.

D. Summary

The experiments on both real and synthetic datasets demon-

strated our superiority over previous approaches. Specifically,

we achieve up to two orders of improvement in running time

compared with CORESETHS and LP-GREEDY under typical

settings; e.g., in Figure 13(b), CORESETHS and LP-GREEDY

took 7 and 30 minutes to return the solutions for α = 0.999,

which is too long, while we only needed 10 seconds to execute

(i.e., 40 times and 180 times improvements over CORESETHS

and LP-GREEDY, respectively). Meanwhile, our solution has

the smallest size in all cases (e.g., half of CORESET on Island

for all α). The scalability of our solution and the effectiveness

of our sampling strategy are also demonstrated. For example,

on a 5-dimensional dataset, our CONE-GREEDY algorithm

returned 96 points for α = 0.999, while the output size of

CORESET is 548 which is too large for a user to examine.

VII. CONCLUSIONS

This paper studies the α-happiness query, which returns

a minimum number of tuples from the database such that

the minimum happiness ratio is at least α. We interpret the

problem from a geometric perspective and give a solution

with novel theoretical guarantees and superior empirical per-

formance. We conducted comprehensive experiments to verify

the efficiency and effectiveness of the proposed solution. As

for future research, we plan to devise a model that estimates

time/size cost given an α value. Other directions include han-

dling larger datasets (which could not fit in main memory) and

with higher dimensionalities as well as exploring parallelism.
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APPENDIX

A. Proof of Theorem 2

Proof. Firstly, we prove that given a feasible solution set S of

a spatial α-coverage problem on D, we have minHap(S) ≥ α.

According to the definition of the spatial α-coverage problem,

for each p ∈ D and its corresponding p′ = αp in D′, p′ lies

inside Conv(S) where D′ is the α-shrunk set of D. Let p′′

be the intersection between Op′ and the surface of Conv(S).
Note that ‖p′‖ ≤ ‖p′′‖ since p′ lies inside Conv(S) while p′′

is a point on the surface of Conv(S). For each p in D,

pRatio(S, p) =
‖p′′‖

‖p‖
≥

‖p′‖

‖p‖
= α.

Then, minHap(S) = minq∈D pRatio(S, q) ≥ α.

Secondly, we assume that S is a feasible solution of the

α-happiness query on D, we prove that Conv(S) covers

Conv(D′) where D′ is the α-shrunk set of D. This is

proven by contradiction. Assume that Conv(S) does not cover

Conv(D′). That is, there exists an extreme point p′ ∈ D′ of

Conv(D′), which lies outside Conv(S). Let p ∈ D be the

point in D such that p′ = αp. Also, let p′′ be the intersection

between Op′ and the surface of Conv(S). Similar to the first

case, ‖p′‖ > ‖p′′‖ since p′ lies outside Conv(S) while p′′ is

a point on the surface of Conv(S). Then, minHap(S) =

min
q∈D

pRatio(S, q) ≤ pRatio(S, p) =
‖p′′‖

‖p‖
<

‖p′‖

‖p‖
= α

which contradicts to the fact that S is a feasible solution of

the α-happiness query and minHap(S) ≥ α.

B. Proof of Lemma 2

Proof. If
⋃

p∈S Fp = FC, for each f ∈ FC and each p′ ∈ D′,

there exists a point p ∈ S such that f(p) ≥ f(p′).

Assume that Conv(S) does not cover Conv(D′). That is,

there exists an extreme point p′ in Conv(D′) such that p′ is

outside Conv(S). According to the definition of convex hull

and FC, there exists a function f ∈ FC such that, for each

p ∈ S, f(p′) > f(p), which contradicts to
⋃

p∈S Fp = FC.

C. Proof of Lemma 3

Proof. Note that for each extreme vector v in Ext(p), we have

v ·p ≥ v ·p′ where p′ is any point in D′. This is true according

the definition of conical hull. Let u be the utility vector of f .

Since f ∈ Fp (i.e., u ∈ Cone(Ext(p), O)), we have u · p =
(
∑

v∈Ext(p) wv) · p =

∑

v∈Ext(p)

w(v ·p) ≥
∑

v∈Ext(p)

w(v ·p′) = (
∑

v∈Ext(p)

wv)·p′ = u·p′.

That is, f(p) ≥ f(p′) for each p′ ∈ D′.

D. Proof of Lemma 4

Proof. Note that ∪p∈SFp = FC implies ∪p∈SCp = S accord-

ing to the definitions of FC and S. Firstly, if ∪p∈SFp = FC,

Vol(S) =
Area(∪p∈SCp)

Area(S) = Area(S)
Area(S) = 1. Secondly, if Vol(S) =

1, ∪p∈SFp = FC must be true. Assume the contrary that

there exists a set of utility functions F = FC \∪p∈SFp 6= ∅.

Denote the set of utility vectors of F by CF = S\
⋃
∪p∈SCp.

We have 1 = Vol(S) =
Area(∪p∈SCp

⋃
CF )

Area(S) =

Area(∪p∈SCp)

Area(S)
+

Area(CF )

Area(S)
>

Area(∪p∈SCp)

Area(S)
= Vol(S),

contradicting to the fact that Vol(S) = 1.

E. Proof of Theorem 3

Proof. We first show that the volume Vol(S) is a submodular

function. We have the following lemma.

Lemma 9: The volume of a set S of points, namely Vol(S),
is a submodular function. Specifically, given any two sets of

points, namely S and S′ where S ⊆ S′, and a point p, we

have

Vol(S ∪ {p})− Vol(S) ≥ Vol(S′ ∪ {p})− Vol(S′).

Proof. Let IntVol(S ∩ p) be the volume of the intersection of

the hulls ∪q∈SCq and Cp. Since S ⊆ S′, IntVol(S′ ∩ p) ≥
IntVol(S ∩p). According to the definition of volume, Vol(S ∪
{p})−Vol(S) = Vol(p)−IntVol(S∩p) ≥ Vol(p)−IntVol(S′∩
p) = Vol(S′ ∪ {p})−Vol(S′), and Vol(S) is submodular.

Since Vol(S) is a submodular function, by utilizing the same

proof in [25], the theorem follows.

F. Proof of Lemma 5

Proof. Firstly, we prove that if s ∈ Cp, s′ =
∑m

i=1 w
′
iv

′ with

w′
i ≥ 0 and

∑m
i=1 w

′
i = 1. Since s ∈ Cp, s =

∑i=1
m wivi

where wi ≥ 0. Note that v′i = civi and s′ = cs where ci, c ≥ 0.

s′ = cs = c

i=1∑

m

wivi = c

i=1∑

m

1

ci
wiv

′
i =

m∑

i=1

w′
iv

′
i

where w′
i =

cwi

ci
≥ 0. Since v′i and s′ lie on hp, v′i · np = cp

and s′ · np = cp. Then,

cp = s′ · np = (

m∑

i=1

w′
iv

′
i) · np =

m∑

i=1

w′
iv

′
i · np =

m∑

i=1

w′
icp.

That is,
∑m

i=1 w
′
i = 1.

Secondly, we prove that ‖v′i‖ ≤ 1 for each i ∈ [1,m].
Consider the extreme vector vi and its corresponding v′i on

hp. Denote the angle between two vectors v and n by θ<v,n>.

According to the definition of vi and v′i

0 < cos(θ<v′
i
,np>) = cos(θ<vi,np>) =

vi · np

‖vi‖‖np‖
= vi · np.

Since v′i lies on hp, ‖v′i‖ =
v′

i·np

‖np‖ cos(θ<v′
i
,np>)

=
cp

cos(θ<v′
i
,np>)

=
minj∈[1,m] np · vj

np · vi
≤ 1.



By Combining the results above, we have ‖s′‖ =
‖
∑m

i=1 w
′
iv

′‖ ≤
∑m

i=1 ‖w
′
iv

′‖ ≤
∑m

i=1 w
′
i = 1.

G. Proof of Lemma 6

Proof. According to the well-known Chernoff-Hoeffding In-

equality [19], with probability at least 1−δ, |̺p(S)− ˜̺p(S)| ≤

ǫ for each p ∈ D. Then, we have 1 = Ṽol(ST ) =

T∑

t=1

˜̺pt
(St−1) ≤

T∑

t=1

(̺pt
(St−1) + ǫ) =

T∑

t=1

̺pt
(St−1) + T ǫ.

Note that T = |ST |. Vol(ST ) =
∑T

t=1 ̺pt
(St−1) ≥ 1−|ST |ǫ.

H. Proof of Lemma 7

Proof. It follows from a similar manner as [25], but we prove

it by the estimated volumes using the sampling strategy.

The problem of finding the minimum size set with volume

equal to 1 (Q) can be formulated as follows.

min |S|

(Q) s. t. Vol(S) = 1 and S ⊆ D

We reformulate (Q) as a linear integer program (QI) [25].

min
∑

p∈D

yp

(QI) s. t.
∑

p∈D

̺p(S)yp ≥ 1− Vol(S), ∀S ⊆ D

yp ∈ {0, 1}, p ∈ D

Denote the optimal value of (Q) and (QI) by Z and ZI .

The following proposition [25] shows that the problem (Q)
and the problem (QI) are equivalent, and Z = ZI .

Proposition 1 ( [25]): S ⊆ D is feasible in (Q) if and only

if its characteristic vector y is feasible in (QI).
To analyze our greedy algorithm, it is necessary to obtain a

lower bound on Z . For this purpose, we consider the following

linear programming relaxation (Q̃R) of (QI).

min
∑

p∈D

yp

(Q̃R) s. t.
∑

p∈D

̺p(St)yp ≥ 1− Vol(St), t = 0, 1, . . . , T − 1

yp ≥ 0, p ∈ D

The dual of (Q̃R) is shown as follows (D̃R).

max

T−1∑

t=0

λt(1− Vol(St))

(D̃R) s. t.

T−1∑

t=0

λt̺p(St) ≤ 1, p ∈ D

λt ≥ 0, t = 0, 1, . . . , T − 1

Let the optimal value of (Q̃R) be Z̃R and the value of

the greedy sampling algorithm be Z̃G. Our aim is to find

appropriate dual feasible solutions for (Q̃R) whose value will

provide a lower bound on Z̃R and hence on Z .

Recall that θ̃t = 1
˜̺pt (St−1)

and θt = 1
̺pt

(St−1)
. The

following simple lemma shows that the definitions of θ̃t and

θt is valid.

Lemma 10: θ̃t > 0 and θt > 0.

Proof. According to the definition of θ̃t and the greedy choice,

˜̺pt
(St−1) > 0 and it is easy to see that θ̃t > 0.

It is interesting to show that θt is also well-defined.

Specifically, we show that the actual marginal volume of pt,
namely ̺pt

(St−1), is strictly greater than 0. This is proven

by contradiction. Assume that ̺pt
(St−1) = 0, which implies

that each point lying inside the conical hull of pt is inside the

conical hulls of some points in St−1, contradicting to the fact

that θ̃t > 0 where there exists at least one sample lying inside

the conical hull of pt but not in any conical hulls of the points

in St−1. Thus, we have θt > 0.

Note that

0 < θ̃1 ≤ θ̃2 ≤ . . . ≤ θ̃T (1)

which is a direct consequence of the greedy heuristic. Also, it

is easy to see from the greedy process that

Vol(S0) ≤ Vol(S1) ≤ ... ≤ Vol(ST−1) ≤ Vol(ST ). (2)

By the definition of marginal volume, for each p ∈ D,

̺p(S0) ≥ ̺p(S1) ≥ ̺p(S2) ≥ ... ≥ ̺p(ST ). (3)

The above inequalities will be applied on the following propo-

sition [25] shortly.

Proposition 2 ( [25]): Let 0 < u1 ≤ u2 ≤ ... ≤ un and

x1 ≥ x2 ≥ ... ≥ xn > 0. If Sum =
∑n−1

i=1 ui(xi − xi+1) +

unxn = u1x1 +
∑n−1

i=1 (ui+1 − ui)xi+1, then

Sum ≤ ( max
i=1,2,...,n

uixi)

[
1 + lnmin{

x1

xn
,
un

u1
}

]
.

I. We firstly prove the first bound in our result. Let Θ =
(θ̃1, θ̃2 − θ̃1, ..., θ̃T − θ̃T−1). In the following, we define

(∗) = Θ · (̺p(S0), ..., ̺p(ST−1)).

There are two cases. We will show that in both cases, (∗) ≤

c̃1[1 + ln k̃1] where c̃1 = 1 + ǫ
˜̺pT (ST−1)

and k̃1 = θ̃T
θ̃1

.

Case 1 (Given the point p ∈ D, there exists an integer

r ≤ T such that ̺p(Sr−1) > 0 and ̺p(Sr) = 0): Applying

Proposition 2 with 0 < θ̃1 ≤ θ̃2 ≤ . . . ≤ θ̃r (obtained

from Equation (1)) and ̺p(S0) ≥ ̺p(S1) ≥ ̺p(S2) ≥ ... ≥
̺p(Sr−1) > 0 (obtained from Equation (3)), we have

(∗) = θ̃1̺p(S0) + (θ̃2 − θ̃1)̺p(S1) + ...+ (θ̃r − θ̃r−1)̺p(Sr−1)

≤

{
max

t=1,...,r
θ̃t̺p(St−1)

}[
1 + lnmin

{
̺p(S0)

̺p(Sr−1)
, θ̃r
θ̃1

}]

≤

{
max

t=1,...,r

̺p(St−1)
˜̺pt(St−1)

}[
1 + ln θ̃r

θ̃1

]



According to the Chernoff-Hoeffding Inequality, with proba-

bility at least 1− δ, we have |̺p(S)− ˜̺p(S)| ≤ ǫ. Then,

̺p(St−1)

˜̺pt
(St−1)

≤
˜̺p(St−1) + ǫ

˜̺pt
(St−1)

=
˜̺p(St−1)

˜̺pt
(St−1)

+
ǫ

˜̺pt
(St−1)

≤ 1 +
ǫ

˜̺pt
(St−1)

where
˜̺p(St−1)
˜̺pt (St−1)

≤ 1 is a consequence of greedy choices. Then,

(∗) ≤

{
max

t=1,...,r

(
1 + ǫ

˜̺pt (St−1)

)}[
1 + ln θ̃r

θ̃1

]

=

{
1 + ǫ

min
t=1,...,r

˜̺pt (St−1)

}[
1 + ln θ̃r

θ̃1

]

≤
{
1 + ǫ

˜̺pT (ST−1)

}[
1 + ln θ̃T

θ̃1

]
(by Equation (1))

Case 2 (Given the point p ∈ D, ̺p(ST ) > 0): Apply

Proposition 2 with 0 < θ̃1 ≤ θ̃2 ≤ . . . ≤ θ̃T (obtained

from Equation (1)) and ̺p(S0) ≥ ̺p(S1) ≥ ̺p(S2) ≥ ... ≥
̺p(ST−1) > 0 (obtained from Equation (3)). We obtain that

(∗) = θ̃1̺p(S0) + (θ̃2 − θ̃1)̺p(S1) + ...+ (θ̃T − θ̃T−1)̺p(ST−1)

≤

{
max

t=1,...,T
θ̃t̺p(St−1)

}[
1 + lnmin

{
̺p(S0)

̺p(ST−1)
, θ̃T
θ̃1

}]

≤

{
1 + ǫ

min
t=1,...,T

˜̺pt(St−1)

}[
1 + ln θ̃T

θ̃1

]

≤
{
1 + ǫ

˜̺pT (ST−1)

}[
1 + ln θ̃T

θ̃1

]
(by Equation (1))

Let c̃1 = 1 + ǫ
˜̺pT (ST−1)

and k̃1 = θ̃T
θ̃1

. Combining Case

1 & 2, we obtain that for each point p ∈ D, (∗) ≤ c̃1(1 +
ln k̃1). That is, [c̃1(1 + ln k̃1)]

−1
Θ · (̺p(S0), ..., ̺p(ST−1)) ≤

1. Together with the fact that [c̃1(1+ln k̃1)]
−1

Θ ≥ 0, we have

[c̃1(1 + ln k̃1)]
−1

Θ is dual feasible for (Q̃R), and therefore,

Z ≥ Z̃R ≥ [c̃1(1 + ln k̃1)]
−1[θ̃1(1− Vol(S0)) + (θ̃2 − θ̃1)×

(1 − Vol(S1)) + . . .+ (θ̃T − θ̃T−1)(1 − Vol(ST−1))]

= [c̃1(1 + ln k̃1)]
−1{

T−1∑

t=1

θ̃t(Vol(St)− Vol(St−1))

+θ̃T (1− Vol(ST−1))}

≥ [c̃1(1 + ln k̃1)]
−1{

T−1∑

t=1

θ̃t(Vol(St)− Vol(St−1))

+θ̃T (Vol(ST )− Vol(ST−1))}

= [c̃1(1 + ln k̃1)]
−1

T∑

t=1

θ̃t̺pt
(St−1)

By the Chernoff-Hoeffding Inequality and Lemma 10, θ̃t
θt

=

̺pt
(St−1)

˜̺pt
(St−1)

≥
˜̺pt

(St−1)− ǫ

˜̺pt
(St−1)

= 1−
ǫ

˜̺pt
(St−1)

≥ 1−
ǫ

˜̺pT
(ST−1)

.

That is, θ̃t ≥ c̃2θt where c̃2 = 1 − ǫ
˜̺pT (ST−1)

> 0 (with the

assumption that ˜̺pT
(ST−1) > ǫ). Then,

Z ≥ Z̃R ≥ [c̃1(1 + ln k̃1)]
−1

T∑

t=1

θ̃t̺pt
(St−1)

≥ [c̃1(1 + ln k̃1)]
−1

T∑

t=1

c̃2θt̺pt
(St−1)

= [c̃1(1 + ln k̃1)]
−1c̃2Z̃

G = [c̃(1 + ln k̃1)]
−1Z̃G

where c̃ = c̃1
c̃2

=
˜̺pT (ST−1)+ǫ

˜̺pT (ST−1)−ǫ . We have Z̃G ≤ Z[c̃(1+ln k̃1)].

II. Define u
t ∈ R

T by u
t[t] = θ̃t and u

t[i] = 0 if i 6= t .

Following a similar analysis as in Part I, we have

u
t · (̺p(S0), ..., ̺p(ST−1)) = θ̃t̺p(St−1) ≤ 1 +

ǫ

˜̺pt
(St−1)

.

Let c̃1 = 1 + ǫ
˜̺pT (ST−1)

. That is, c̃−1
1 u

t ·

(̺p(S0), ..., ̺p(ST−1)) ≤ 1. Together with the fact that

c̃−1
1 u

t ≥ 0, c̃−1
1 u

t is dual feasible solution for (Q̃R) for each

t = 1, ..., T . It follows that

Z ≥ Z̃R ≥ max
t∈[1,T ]

c̃−1
1 u

t(1 − Vol(S0), ..., 1 − Vol(ST−1))

= c̃−1
1 max

t∈[1,T ]
θ̃t(1− Vol(St−1)).

Let

(∗∗) =

T−1∑

t=1

θ̃t(Vol(St)− Vol(St−1)) + θ̃T (1− Vol(ST−1)).

By applying Proposition 2 with 0 < θ̃1 ≤ ... ≤ θ̃T (obtained

from Equation (1)), and 1 − Vol(S0) ≥ 1 − Vol(S1) ≥ ... ≥
1− Vol(ST−1) > 0 (obtained from Equation (2)), we have

(∗∗) ≤ max
t∈[1,T ]

{
θ̃t (1− Vol(St−1))

}
[1 + ln

1− Vol(S0)

1− Vol(ST−1)
]

≤ c̃1Z[1 + ln
1− Vol(S0)

1− Vol(ST−1)
] = c̃1Z[1 + ln

1

1− Vol(ST−1)
].

Since 1 ≥ Vol(ST ), we have 1− Vol(ST−1) ≥

Vol(ST )− Vol(ST−1) = ̺pT
(ST−1) ≥ ˜̺pT

(ST−1)− ǫ. (4)

Since θ̃t ≥ c̃2θt where c̃2 = 1− ǫ
˜̺pT (ST−1)

> 0 (see Part I),

(∗∗) ≥

T−1∑

t=1

θ̃t̺pt
(St−1) + θ̃T̺pT

(ST−1) (By Equation (4))

=

T∑

t=1

θ̃t̺pt
(St−1) ≥ c̃2

T∑

t=1

θt̺pt
(St−1) ≥ c̃2Z̃

G.

Combining the above inequalities for (∗∗), we have

Z̃G ≤
c̃1
c̃2
Z[1 + ln

1

1− Vol(ST−1)
]

≤
c̃1
c̃2
Z[1 + ln

1

˜̺pT
(ST−1)− ǫ

] (By Equation (4))

= Z[c̃(1 + ln k̃2)]

where c̃ = c̃1
c̃2

=
˜̺pT (ST−1)+ǫ

˜̺pT (ST−1)−ǫ and k̃2 = 1
˜̺pT (ST−1)−ǫ .



Combining I. and II., we have Z̃G ≤ Z[c̃(1 +
lnmin{k̃1, k̃2})] where ZG and Z are in fact |ST | and |S∗|,
respectively.

I. Proof of Lemma 8

Proof. Denote the minimum set cover of the N samples by

S̃∗. It is well-known that the greedy algorithm is a (1+logN)
approximate algorithm for the set cover problem. That is,

|ST | ≤ (1 + logN)|S̃∗|.

Note that S∗, the optimal set with Vol(S∗) = 1, corresponds

to a set cover of the samples. Then, |S̃∗| ≤ |S∗|.
Thus, we have |ST | ≤ (1 + logN)|S∗|.
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