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Abstract—Due to the prevalence of graph data, graph analysis
is very important nowadays. One popular analysis on graph
data is Random Walk with Restart (RWR) since it provides
a good metric for measuring the proximity of two nodes in
a graph. Although RWR is important, it is challenging to
design an algorithm for RWR. To the best of our knowledge,
there are no existing RWR algorithms which, at the same
time, (1) are index-free, (2) return answers with a theoretical
guarantee and (3) are efficient. Motivated by this, in this paper,
we propose an index-free algorithm called Residue-Accumulated
approach (ResAcc) which returns answers with a theoretical
guarantee efficiently. Our experimental evaluations on large-scale
real graphs show that ResAcc is up to 4 times faster than the
best-known previous algorithm, guaranteeing the same accuracy.
Under typical settings, the best-known algorithm ran around
1000 seconds on a large dataset containing 41.7 million nodes,
which is too time-consuming, while ResAcc finished in 275 seconds
with the same accuracy. Moreover, ResAcc is up to 6 orders
of magnitude more accurate than the best-known algorithm in
practice with the same execution time, which is considered as a
substantial improvement.

I. INTRODUCTION

The node-to-node proximity captures the relevance between
two nodes in a graph and has been recognized as an important
research problem in the data mining community [23], [3],
[24], [6], [10]. Random Walk with Restart (RWR) is a widely
adopted proximity measure due to its ability of considering
both the local structure and global structure of the graph.
Specifically, given a graph G and a pair of nodes, namely s and
t in G, the RWR value π(s, t) is defined as the probability that
a random walk starting from s (the source node) terminates
at t (the target node), which reflects the relevance of t with
respect to (w.r.t) s. One useful query of RWR is the single-
source RWR (SSRWR) query, which takes as input a source
node s and returns the RWR values of all nodes in the graph
w.r.t s.

The SSRWR query has many real-world applications. One
application is for improving the quality of community de-
tection in networks [5], [31], [7], [12]. In addition, SSRWR
queries are widely used for real-time recommendation sys-
tems [8], [19], [17], [25] (which recommends to a user items
that are similar to those the user has liked previously), and
friend-suggestion on social networks (which recommends to a
user some friends who have high relevance to the user).

Although the SSRWR query is widely needed, it is challeng-
ing to design an algorithm for effectively computing RWR
values quickly. We summarize 3 challenges here. The first

challenge is that adopting an index-oriented approach is too
costly for SSRWR. That is, the index-oriented approaches
require huge time overheads, high memory cost (in the online
query phase), and bulky space cost (of the offline indexing
structures), leading them infeasible to be applied to dynamic
graphs. This challenge motivates us to design an index-free
approach in this paper.

The second challenge is that computing exact RWR values
is computationally expensive. Among all existing algorithms,
Inverse [24] is the only one that computes the exact RWR
values. Since Inverse needs to compute the inverse of an (n×n)
matrix, where n is the number of nodes, it takes O(n2.373)
time cost, which is unaffordable at all when n is large. This
challenge motivates us to design an algorithm returning an
approximate solution with a theoretical error bound.

The third challenge is that it is expected to answer the
SSRWR query efficiently in many applications like the over-
lapping community detection mentioned earlier, which is much
challenging when we address the above 2 challenges. In the
literature, all index-free approaches returning an approximate
solution with a theoretical error bound [21], [9], [18], [29],
[30] could not answer the SSRWR query efficiently. Among all
these approaches, FORA [29] has the best performance in the
query phase in terms of accuracy and efficiency. Unfortunately,
our experimental results show that FORA took around 1,000
seconds in Twitter containing only 41.7 million nodes for the
SSRWR query. It could not meet the efficient requirement for
the real-world applications where the graph, such as Instagram
containing 1 billion nodes, is more large-scale than Twitter.

Motivated by the above 3 challenges, in this paper, we
design an algorithm called Residue-Accumulated approach
(ResAcc) which satisfies the following requirements.
• Index-free. It does not incur any burden to the data man-

agement system (i.e., index construction and maintenance).
• Output-bound. It outputs the estimated RWR values with

accuracy guarantee.
• High-efficiency. It is computationally efficient.
However, none of the existing algorithms satisfy all the above
3 requirements simultaneously as shown in Table I.
Our contributions. The following shows our major contribu-
tions. (1) Firstly, we propose an index-free algorithm, ResAcc,
satisfying the 3 requirements simultaneously, by incorporating
a novel and highly efficient technique called h-HopFWD
where h is a parameter. (2) Secondly, we prove that ResAcc can
guarantee the user-specified accuracy with (1−pf ) probability



TABLE I
COMPARISON AMONG EXISTING ALGORITHMS FOR THE SSRWR QUERY.

Approach Technique Algorithm Error Bound Efficiency

Index-
oriented

Iterative-based TPA [32] Additive Medium

Matrix-based

B-LIN [24] Not given Slow
QR [11] Not given Slow

BEAR [23] Relative Medium
BePI [14] Relative Medium

Monte-Carlo-based
HubPPR [26] Relative Medium
FORA+ [29] Relative Fast

Index-
free

Iterative-based Power [21] Additive Slow

Local update
Forward

Search [2]
Not given Fast

Matrix-based Inverse [24] Exact Slow

Monte-Carlo-based

Random Walk
Sampling [9]

Relative Slow

BiPPR [18] Relative Medium
TopPPR [30] Additive Medium
FORA [29] Relative Medium

ResAcc (ours) Relative Fast

where pf is the failure probability. (3) Thirdly, we conducted
comprehensive experiments on real datasets containing up
to billions of edges. The results demonstrate that ResAcc
outperforms all the existing algorithms by up to 4 times in
terms of query time and by up to 6 orders of magnitude
in terms of accuracy, which is considered as a substantial
improvement. In particular, our experiments show that the
best-known algorithm FORA ran nearly 1000 seconds on
Twitter, but RecAcc ran less than 275 seconds with the same
theoretical accuracy. (4) Fourthly, to show the superiority of
ResAcc over the existing algorithms in real-world applications,
we conducted an experiment for the overlapping community
detection. The results about the overlapping community detec-
tion demonstrate that our proposed method ResAcc took less
time cost by up to 1 order of magnitude than FORA.

We organize the paper as follows. Section II gives our
problem definition, and introduces two basic existing tech-
niques and the state-of-the-art FORA. Section III elaborates
our proposed method ResAcc. Sections IV and V present
two techniques used in ResAcc. The detailed related work
and the experimental results are elaborated in Section VI and
Section VII, respectively. Section VIII gives the conclusions.

II. PRELIMINARIES

In Section II-A, we first define our problem. Several impor-
tant concepts are defined in Section II-B, while the background
techniques used by the state-of-the-art appear in Section II-C.

A. Problem Definition

Let G(V,E) be a directed unweighted graph with n nodes
and m edges. For an undirected graph, we can convert it to
a directed one by treating each edge as two opposite directed
edges. Same as [26], [29], [30], [23], [14], [24], we assume
that the graph has no self-loop. Given a graph G(V,E) and
a source node s, Random Walk with Restart (RWR) [24]
computes the RWR value of each node in G(V,E) w.r.t s
by simulating a number of random walks, where each random
walk starts from s, and at each step, it either (i) terminates with

α probability, or (ii) moves to an out-neighbour of the current
node with (1−α) probability. For each t ∈ V , the RWR value
π(s, t) of t w.r.t s can be regarded as the stationary probability
that a random walk from s terminates at t. In this paper, we
focus on the approximate single-source RWR query (SSRWR).

Definition 1 (Approximate SSRWR). Given a graph G(V,E),
a source node s, a threshold δ, a restart probability α, a
relative error ε and a fail probability pf , an approximate
SSRWR returns the estimated RWR value π̂(s, t) such that for
each t ∈ V whose π(s, t) > δ, with at least 1−pf probability,

|π̂(s, t)− π(s, t)| ≤ ε · π(s, t). (1)

Personalized PageRank (PPR). Personalized PageRank
(PPR) [20] is an extension of RWR, which calculates the
relevance of nodes according to a preference distribution for
a given source node s. A random walk considered by PPR
either jumps to a random node according to this preference
(with α probability) or moves to an out-neighbour (with 1−α
probability) [23]. However, most studies on PPR [18], [26],
[29], [4], [1], [24], [11] focus on the single-source PPR
query (SSPPR), which the random walk stops and re-starts
from (which could be interpreted as jumping to) s with α
probability, and returns the PPR value of all nodes in the graph
w.r.t s. In this case, SSPPR is identical to SSRWR.

B. Concepts and Their Definitions

In this section, we formally define several important terms
to be used in our proposed method.

Definition 2 (The shortest distance). Given two nodes in a
graph, namely u and v, the shortest distance from u to v is
the length of the shortest path from u to v.

Definition 3 (The i-hop layer). Given a node v in a graph,
the i-hop layer of v, denoted by Li−hop(v), is the set of nodes
whose shortest distance from v is exactly i. Besides, when
i = 0, L0−hop(v) = {v}.

Definition 4 (The i-hop set). Given a node v in a graph, the i-
hop set of v, denoted by Vi−hop(v), is the set of nodes whose
shortest distance from v is at most i. That is, Vi−hop(v) =
L0−hop(v) ∪ L1−hop(v) ∪ ... ∪ Li−hop(v).

Definition 5 (The i-hop induced subgraph). Given a node v
in a graph G, the i-hop induced subgraph of v, denoted by
G′i−hop(v), is the subgraph of G induced by the i-hop set of
v, i.e., Vi−hop(v), such that the set of nodes in G′i−hop(v) is
Vi−hop(v) and the set of edges in G′i−hop(v) is {(u,w)|u,w ∈
Vi−hop(v) and (u,w) ∈ E}.

C. Basic Techniques and The State-Of-The-Art

Next, we introduce two basic techniques for SSRWR,
namely Random Walk sampling [9] and Forward Search [2],
which are used in the state-of-the art, FORA [29].
Random Walk sampling [9]. Given a source node s, random
walk sampling first generates a number of random walks from
s and for each t ∈ V , it uses the fraction of walks that
terminate at t as an estimation of π(s, t), denoted by π̂(s, t).



Algorithm 1 Forward search
Input: A graph G(V,E), a source node s, the restart probability α, and the residue

threshold rfmax
Output: Reserve πf (s, t) and residue rf (s, t) for each t ∈ V
1: πf (s, t)← 0 for all t ∈ V ;
2: rf (s, s)← 1; rf (s, t)← 0 for each t ∈ V \{s};
3: while ∃t ∈ V such that rf (s, t)/dout(t) ≥ rfmax do
4: Do a forward push operation at node t;
5: Return πf (s, t) and rf (s, t) for each t ∈ V ;

Its time cost depends on the number of walks it generates.
According to [9], to guarantee a relative error ε, it needs to
generate O(n log(n)

ε2 ) random walks. Thus, it takes O(n logn
αε2 )

query time since the expected length of a walk is 1
α , which is

expensive for large-scale graphs.
Forward Search [2]. Forward Search is a local update
algorithm which approximates the RWR value of each node
w.r.t a source node s via a graph traversal. Specifically, for
each t ∈ V , it maintains a forward reserve πf (s, t) and a
forward residue rf (s, t) and continually updates them using
forward push operations (to be defined shortly). Intuitively,
the forward residue rf (s, t) “temporarily” stores some RWR
values that belong to t and its out-neighbours. The forward
push operation “pushes” the current residue held by t to itself
and its out-neighbours denoted by N out(t). When it finishes,
the final forward reserve πf (s, t) is an approximate RWR
value π̂(s, t). Formally, the push condition and the forward
push operation are defined below.

Definition 6 (The push condition). Given a residue threshold
rfmax, a node t ∈ V is said to satisfy the push condition if and
only if its residue rf (s, t) divided by its out-degree dout(t) is
at least rfmax, i.e., rf (s,t)

dout(t)
≥ rfmax.

Definition 7 (Forward push operation). If a node t ∈ V
satisfies the push condition, a forward push operation at node
t will be performed by executing three actions sequentially: (i)
it increases t’s reserve πf (s, t) by α · rf (s, t); (ii) it increases
the residue of each out-neighbour of t by 1−α

dout(t)
·rf (s, t); and

(iii) it sets rf (s, t) = 0.

Algorithm 1 gives the pseudo-code of Forward Search. It
is proven in [2] that Forward Search takes O( 1

αrfmax
) query

time. Given a smaller rfmax, Forward Search is slower since it
needs to perform more push operations. Besides, for any fixed
rfmax > 0, Forward Search cannot provide any output bound.
FORA [29]. To our best knowledge, FORA is the state-
of-the-art index-free algorithm for SSRWR, whose key idea
is to combine Forward Search and Random Walk sampling.
Specifically, FORA first performs Forward Search with early
termination (using a larger residue threshold rfmax), and
subsequently runs a certain number of random walks only
from the nodes whose residue is non-zero. In this way, the
number of walks required for satisfying the given accuracy
is reduced compared with the traditional random walk sam-
pling. To satisfy Equation (1) in Definition 1, FORA requires
O( 1

α·rfmax
+
m·rfmax·c

α ) query time where c = (2ε/3+2)·log(2/pf )
ε2·δ ,

since it takes O( 1

α·rfmax
) time for Forward Search and gener-
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Fig. 1. Running example of the effect of residue accumulation. For each push
operation, the updated residues are highlighted in grey.

ates O(m · rfmax · c) random walks. However, FORA is still
inefficient (to be elaborated in Section III and Section IV).

III. RESACC: RESIDUE-ACCUMULATED APPROACH

In this section, we present our Residue-Accumulated ap-
proach (ResAcc) for SSRWR query. As a whole, ResAcc
estimates the RWR value π(s, t) of each node t ∈ V w.r.t
a source s by applying the following invariant from [1], [29]:

π(s, t) = πf (s, t) +
∑
v∈V r

f (s, v) · π(v, t). (2)
where πf (s, t) (resp. rf (s, v) ) is the reserve of node t (resp.
the residue of node v) w.r.t s. This equation provides a way
to compute π(s, t) by utilizing the reserves and the residues
of all nodes in the graph. However, it is very expensive to
compute the RWR value π(v, t) for each v ∈ V . To speed up
the computation, a rough approximation of π(v, t), denoted as
πo(v, t), can be computed by utilizing Random Walk sampling
so that ResAcc estimates the RWR value π(s, t) as follows:

π̂(s, t) = πf (s, t) +
∑
v∈V r

f (s, v) · πo(v, t), (3)
where π̂(s, t) is the estimation of π(s, t).
Main challenge. A straightforward solution by exploiting
Equation (3) is to first perform Forward Search with a residue
threshold rfmax and then simulate the random walks from
each node v whose residue rf (s, v) is non-zero, which is
the major idea of FORA. However, this solution suffers from
low-efficiency issue due to two reasons: (1) Forward Search
is inefficient even with a large rfmax, and (2) it requires to
simulate a huge number of random walks. In particular, the
number of random walks required by FORA is proportional to
the sum of non-zero residues of all the nodes in the graph,
denoted as rsum where rsum =

∑
v∈V r

f (s, v), which is
usually large due to the large residue threshold rfmax. Thus,
the existing technique Forward Search significantly limits the
efficiency for computing the reserves and residues, leading to
that FORA cannot answer SSRWR query efficiently.

A. Intuition of Residue Accumulation

For Algorithm 1 (Forward Search), given the source node s,
the residue rf (s, t) of node t ∈ V can be regarded as a “tem-
porary container” that contains a part of reserves that belong to
t’s out-neighbours and t itself. Thus, a forward push operation
at node t can be regarded as a settlement to let rf (s, t) be 0
(since the graph has no self-loop). If we do not perform a
push operation at t, rf (s, t) will increase by receiving the



residues from its in-neighbours and be accumulated to a large
value. This large accumulated residue rf (s, t) is important
since node t can perform the push operation only once rather
than every time t satisfies the push condition. We denote this
phenomenon of accumulating large residue values as residue
accumulation. To illustrate the effect of residue accumulation,
an running example is given in Figure 1, where Figure 1(a)
shows the graph, Figure 1(b) and Figure 1(c) show the push
operations without and with applying the residue accumulation
at node v2, respectively. Specifically, with applying the residue
accumulation at v2, we do not perform the push operation at v2
until its residue remains unchanged. By comparing Figure 1(b)
with Figure 1(c), we can see that the residue accumulation at
node v2 can reduce the total number of push operations of
Forward Search from 4 to 3, and the final results on both
cases are the same. Although the performance gain in this
example is only 1 since the graph is very simple, the gain in
the real-world would be very large where the number of in-
neighbours of a node is large. Thus, the residue accumulation
is very useful to accelerate the computations of SSRWR.

B. Overview of ResAcc

To efficiently solve SSRWR query, ResAcc exploits the
intuition of residue accumulation in a non-trivial way so
that it has the following two achievements: (i) it quickly
updates the reserves and residues of all nodes in the graph
by taking a small amount of time cost, and (ii) the number
of random walks required is significantly reduced since rsum
is largely reduced. Thus, ResAcc is of high efficiency while
guaranteeing high accuracy of the estimated RWR values.
Towards this end, ResAcc computes the reserve and residue
of each node by subsequently using two efficient and novel
techniques proposed by us, called the h-Hop forward search
(h-HopFWD) and the one-more forward search (OMFWD).
As illustrated in Figure 2, ResAcc consists of three phases:
• the h-HopFWD phase (see Section IV for the details). In

this phase, ResAcc runs h-HopFWD from the source node
s by focusing on the h-hop induced subgraph of s (i.e.,
G′h−hop(s)). This phase quickly computes the reserve and
residue of each node in G′h−hop(s) (instead of all nodes in
the graph) by utilizing the intuition of residue accumulation.

• the OMFWD phase (see Section V for the details). In this
phase, ResAcc runs OMFWD to obtain the final reserve
πf (s, t) and final residue rf (s, t) of each t ∈ V . This
phase further reduces rsum quickly due to the residue
accumulation at the nodes in L(h+1)−hop(s).

• the Remedy phase. In this phase, ResAcc estimates π̂(s, t)
for each node t ∈ V by combining Random Walk sampling
with the final reserves and residues based on Equation (3).

C. Implementation Details of ResAcc

Algorithm 2 gives the pseudo-code of ResAcc. For read-
ability of this algorithm, we regard h-HopFWD and OMFWD
as blackboxes here (to be introduced later). ResAcc takes as
inputs a graph G(V,E), a source node s, a restart probability

Fig. 2. Illustration of ResAcc from the source node s.

α, a residue threshold for h-HopFWD rhopmax, a residue thresh-
old for OMFWD rfmax, and the number of hops h. The goal
of ResAcc is to return the estimated RWR value π̂(s, t) of
each node t in the graph. Specifically, ResAcc first initializes
the estimated RWR value π̂(s, t) = 0 for each node t ∈ V
and the forward residue rf (s, t) such that rf (s, s) = 1 and
rf (s, t) = 0 for each t ∈ V where t 6= s (Lines 1-2). Then, it
starts the h-HopFWD phase by invoking Algorithm 3 (to be
introduced later) by taking as inputs the source s, the threshold
rhopmax, parameter h, and the current reserve and residue of each
node (Line 3). Next, it starts the OMFWD phase by invoking
Algorithm 4 (to be introduced later) taking as input rfmax and
the current reserve and residue of each node (Line 4). After
that, the reserve π̂(s, t) and residue rf (s, t) of each t ∈ V are
obtained. Finally, it starts the remedy phase (Lines 5-17).

In the remedy phase, ResAcc estimates
∑
v∈V r

f (s, v) ·
πo(v, t) in Equation (3) by simulating a number of random
walks from each v whose residue rf (s, v) is non-zero. Specif-
ically, it computes the total residue of all nodes rsum, based
on which it derives a value nr that will be used to decide the
number of random walks from each node v (Line 6-7). After
that, it proceeds to estimate rf (s, v)·πo(v, t) for each v whose
residues are larger than zero (Lines 8-15). In particular, for
each t ∈ V , it initializes a value Ct to be zero (i.e., Ct = 0),
where Ct is the estimated value of

∑
v∈V r

f (s, v) · πo(v, t)
(Line 8). After that, for each node v, it performs nr(v) random
walks from v, where nr(v) is defined as below:

nr(v) =
⌈rf (s, v) · nr

rsum

⌉
.

If a random walk terminates at a node t, then ResAcc increases
Ct by a(v)·rsum

nr
, where a(v) = rf (s,v)

rsum
· nr
nr(v)

(Lines 11-15).
After each v whose residue is non-zero is processed, for each
t ∈ V , the algorithm increases π̂(s, t) by Ct (Lines 16-17).
Then, the algorithm terminates.

D. Accuracy Guarantee

We first prove that the results returned by ResAcc are
unbiased. Due to space limit, we give the proof sketches of
all lemmas and theorems below while the step-by-step proofs
could be found in the appendix of our technical report [16].

Theorem 1. The expectation of π̂(s, t) returned by Algo-
rithm 2 is equal to π(s, t), i.e., E[π̂(s, t)] = π(s, t).

Proof. Firstly, to prove this theorem, it is equal to prove that
E[Ct] =

∑
v∈V r

f (s, v) · π(v, t). Next, we prove that when
ResAcc processes a node v whose residue is non-zero, the
expected amount of increment of Ct is exactly rf (s, v)·π(v, t)



Algorithm 2 ResAcc
Input: A graphG(V,E), the source node s, the restart probability α, residue thresholds

rhopmax and rfmax, and the number of hops h
Output: Reserve π̂(s, t) for each t ∈ V
1: π̂(s, t)← 0 for all t ∈ V ;
2: rf (s, s)← 1; rf (s, t)← 0 for each t ∈ V such that t 6= s;
3: [π̂s, r

f
s ]← h-HopFWD(s, rhopmax, h, [π̂s, r

f
s ]);

4: [π̂s, r
f
s ]← OMFWD(rfmax, [π̂s, r

f
s ]);

5: /*Start the remedy process*/
6: Compute rsum =

∑
v∈V r

f (s, v);

7: Compute nr = rsum ·
(2ε/3+2)·log(2/pf )

ε2·δ
;

8: Ct ← 0 for each t ∈ V ;
9: for v ∈ V with rf (s, v) > 0 do

10: Let nr(v) =
⌈
rf (s,v)·nr
rsum

⌉
;

11: Let a(v) =
rf (s,v)
rsum

· nr
nr(v)

;
12: for i = 1 to nr(v) do
13: Generate a random walk from v;
14: Let t be the last node of this walk;
15: Ct ← Ct +

a(v)·rsum
nr

;
16: for each node t ∈ V do
17: π̂(s, t)← π̂(s, t) + Ct;
18: Return π̂(s, t) for each t ∈ V ;

based on the definition of nr, nr(v), and a(v). Finally, by
processing all nodes, E[Ct] =

∑
v∈V r

f (s, v) · π(v, t).
Next, we show that ResAcc guarantees the accuracy of the

estimated RWR values by applying the following concentra-
tion bound as shown in Theorem 2 from [29].

Theorem 2 ([29]). Let X1, ..., Xnr be independent random
variables with Pr[Xi = 1] = pi and Pr[Xi = 0] = 1−pi. Let
X = 1

nr

∑nr
i=1 aiXi with ai > 0, and ζ = 1

nr

∑nr
i=1 a

2
i ·pi. By

letting a = max{a1, ..., anr}, the following inequality holds:

Pr[|X − E[X]| ≥ λ] ≤ 2 · exp(− λ2 · nr
2ζ + 2aλ/3

).

Lemma 1. For any node t, given an arbitrary
relative error ε, we have the following inequality:
Pr[|π(s, t)− π̂(s, t)| ≥ ε · π(s, t)] ≤ 2 · exp(− ε2·nr·π(s,t)

rsum·(2+2ε/3) ).

Proof. Firstly, we define some notations. Let bj = a(v) if
the j-random walk starts from a node v ∈ V where j ∈
{1, ..., nr}. We can know that maxjbj = 1, and b2j ≤ bj for
any j since a(v) ≤ 1. Then, we define Yj(t) be the random
variable such that:

Yj(t) =

{
1, if the j-th walk ends at t,
0, otherwise.

Let Y = 1
nr

∑nr
j=1 bjYj(t), and ζ = 1

nr

∑nr
j=1 b

2
i ·E[Yj(t)]. Let

a = max{b1, ..., bnr}. By definition, b2j ≤ 1, and so, ζ ≤ E[Y ]
and a ≤ 1. Secondly, by substituting ζ and a in Theorem 2,
we have that: Pr[|Y − E[Y ]| ≥ λ] ≤ 2 · exp(− λ2·nr

2E[Y ]+2λ/3
).

Since π(s, t)− π̂(s, t) = nr(v)·rsum
nr

(E[Y ]− Y ), we have
Pr[|π(s, t)− π̂(s, t)| ≥ nr(v)·rsum

nr
· λ] ≤ 2 exp(− λ2·nr

2E[Y ]+2λ/3
).

Finally, we complete the proof due to the facts that
E[Y ] ≤ nr

nr(v)·rsum · π(s, t), λ = ε · nr·π(s,t)
nr(v)·rsum and a < 1.

Theorem 3. For any node t with π(s, t) > δ, if nr ≥ rsum ·
(2ε/3+2)·log(2/pf )

ε2·δ , ResAcc returns an approximate RWR π̂(s, t)
that satisfies Equation(1) with at least 1− pf probability.

Proof. We prove that Pr[|π(s, t)− π̂(s, t)| ≥ ε · π(s, t)] ≤ pf
by substituting nr and π(s, t) in Lemma 1.

Push operation 
at node 𝑣

𝑟#
$(𝑠, 𝑣) 𝜋#

$(𝑠, 𝑣)
𝑠 𝑣# 𝑣* 𝑠 𝑣# 𝑣*

Initial None 0.512 0 0 0 0 0
(1) 𝑠 0 0.4096 0 0.1024 0 0
(2) 𝑣# 0 0 0.32768 0.1024 0.08192 0
(3) 𝑣* 0.262144 0 0 0.1024 0.08192 0.065536

Push operation 
at node 𝑣

𝑟+
$(𝑠, 𝑣) 𝜋+

$(𝑠, 𝑣)
𝑠 𝑣# 𝑣* 𝑠 𝑣# 𝑣*

Initial None 1 0 0 0 0 0
(1) 𝑠 0 0.8 0 0.2 0 0
(2) 𝑣# 0 0 0.64 0.2 0.16 0
(3) 𝑣* 0.512 0 0 0.2 0.16 0.128

𝑠

𝑣# 𝑣*

(a) A graph 
for example.

(b) Subsequent forward push operations with the initial residue 
of 𝑠, 𝑟+

$(𝑠, 𝑣) = 1.

(c) Subsequent forward push operations with the initial residue of 𝑠, 𝑟#
$(𝑠, 𝑣) = 0.512.

Source node

Fig. 3. Running example of the looping phenomenon where the restart
probability α = 0.2 and the residue threshold rfmax = 0.1. For each push
operation, the newly updated residue and reserve are highlighted in grey.

IV. NEW TECHNIQUE: h-HOPFWD

A. Observation: Looping Phenomenon

We observed that the Forward Search (Algorithm 1) has the
looping phenomenon at the source node s. Initially, Forward
Search assigns 1 to the residue of s w.r.t s, i.e., rf (s, s) = 1.
For simplicity, we denote this initial residue of s as rf0 (s, s).
Subsequently, Forward Search performs the very first forward
push operation at node s since only s satisfies the push
condition (while currently other nodes have zero residue),
after which, the residue of s becomes zero. However, during
the remaining process of Forward Search, the residue of s
might become non-zero again via its in-neighbours, denoted
by rf1 (s, s) to differentiate from rf0 (s, s). Since rf1 (s, s) is non-
zero, the algorithm needs to do another forward push operation
at s again (if it satisfies the push condition). However, we
observed that all the operations done with the originally
residue value (i.e., rf0 (s, s) = 1) have to be repeated with
the newly updated residue rf1 (s, s).

To illustrate, a running example is given in Figure 3
where Figure 3(a) shows the graph. In particular, Figure 3(b)
illustrates three push operations performed when the initial
residue of s (rf0 (s, s)) is set to be 1. Specifically, the algorithm
subsequently performs a push operation at s, v1, and v2. For
each push operation, the newly updated residue and reserve
are highlighted in grey. We can see that after the third push
operation (at node v2), the residue of s becomes non-zero (i.e.,
0.512), which consequentially leads the algorithm perform a
push operation at s again. Next, Figure 3(c) illustrates the
three push operations performed when the initial residue of
s becomes 0.512. However, the orderings of push operations
performed at this time is the same as in Figure 3(b). Thus, a
looping phenomenon exists at node s, leading to the redundant
operations in Forward Search since such loopings at node s
will continue to happen until the final residue of s cannot
satisfy the push condition. For example, the final residue of
s in Figure 3(c) is 0.262144 (> rfmax = 0.1), which makes
another loop at s, leading to low-efficiency.



B. Details of h-HopFWD

To avoid the looping phenomenon in Forward Search, we
propose a new technique called h-HopFWD by accumulating
the residue of the source node s so that the looping at s is
cut down to avoid the redundant push operations. However, it
is computationally expensive to accumulate the residue of s
in the whole graph since it takes large time cost to let all the
nodes in the graph except s not satisfy the push condition. To
address this issue, h-HopFWD exploits the hop-based induced
subgraph constructed from source s, namely G′h−hop(s) such
that it can perform the push operations at only the nodes in
G′h−hop(s), instead of at all the nodes in the graph, and so
its time cost is extremely low. Besides, the subgraph helps
to accumulate the residue of nodes in L(h+1)−hop(s) to be a
large value (see Section V). As a whole, h-HopFWD has two
phases: the accumulating phase and the updating phase. In the
accumulating phase, it accumulates the residue of s after the
first push operation. This phase continues until the residue of
s remains unchanged. In the updating phase, it computes the
reserve and residue of each node in the subgraph in O(1) time
by utilizing the accumulated residue of s.
The updating phase. However, it comes a question: how to
compute the reserve and residue of each node in the subgraph?
The updating phase is based on Lemma 2, which indicates that
the ordering of all the push operations done with rf0 (s, s) = 1
(the original residue of s) could be the same as these with the
accumulated residue rf1 (s, s) after the accumulating phase (if
it is not zero) by adjusting the push condition.

Lemma 2. Given a residue threshold rhopmax, the ordering of all
the push operations done with rf0 (s, s) = 1 could be identical
to these with rf1 (s, s) by changing the push condition with
rf1 (s, s) as follows: a node t ∈ V is said to satisfy the push
condition if and only if its residue divided by its out-degree
dout(t) is at least rhopmax ·r

f
1 (s, s) (instead of rhopmax as previous).

Proof. For the case with rf0 (s, s) = 1, we assume that
the total number of push operations is l. We denote the
ordering of nodes selected for the push operations as {N}l =
{v1, v2, ..., vl} where vi ∈ V . Similarly, We denote the
ordering of nodes with rf1 (s, s) as {N ′}l′ = {v

′

1, v
′

2, ..., v
′

l′}
where l′ is the number of push operations done with rf1 (s, s).
Using Mathematical Induction, we prove that {N}l is equal
to {N ′}l′ such that: (i) l = l′ and (ii) vi = v

′

i for each i.

Besides, we observe that for a fixed initial residue of the
source node s, says rf0 (s, s), in the accumulating phase, the
reserve and residue of each node are proportional to rf0 (s, s)
with different coefficients. For example, given a graph shown
in Figure 3(a), with rf0 (s, s), the residue of node v1 is equal
to (1−α)

dout(s)
· rf0 (s, s) by a push operation at node s; and

the residue of node v2 is equal to (1−α)rf0 (s,v1)
dout(v1)

, which is
(1−α)2

dout(v1)dout(s)
·rf0 (s, s), by a push operation at node v1. Thus,

if we know the reserve and residue of any node t ∈ V after
the accumulating phase with rf0 (s, s), it is easy to know the
reserve and residue of node t after the accumulating phase with

Algorithm 3 h-HopFWD
Input: Graph G(V,E), source node s, restart probability α, residue threshold rhopmax,

the number of hops h, reserve πf (s, t) and residue rf (s, t) of each node t ∈ V
Output: Reserve πf (s, t) for each t ∈ Vh−hop(s) and residue rf (s, t) for each

t ∈ Vh−hop(s) ∪ L(h+1)−hop(s)
1: /*Start the accumulating phase*/
2: Perform a single forward push operation at s;
3: while ∃t ∈ Vh−hop(s)\{s} such that r

f (s,t)
dout(t)

≥ rhopmax do
4: for each v ∈ Nout(t) do
5: rf (s, v)← rf (s, v) + (1− α) · r

f (s,t)
dout(t)

;
6: πf (s, t)← πf (s, t) + α · rf (s, t);
7: rf (s, t)← 0;
8: /*Start the updating phase*/

9: T ←
⌈

log(r
hop
max·dout(s))
log rf (s,s)

⌉
; //compute the maximum number of loops at s

10: S ← 1−[rf (s,s)]T−1

1−rf (s,s)
; //compute the scaler

11: for each v ∈ Vh−hop(s) do
12: πf (s, v)← πf (s, v) · S;
13: if v is the source node s then
14: rf (s, v)← [rf (s, v)]T ;
15: else
16: rf (s, v)← rf (s, v) · S;
17: for each v ∈ L(h+1)−hop(s) do
18: rf (s, v)← rf (s, v) · S;
19: Return Reserve πf (s, t) for each t ∈ Vh−hop(s) and residue rf (s, t) for each

t ∈ Vh−hop(s) ∪ L(h+1)−hop(s);

a different value for the initial residue of s, says rf1 (s, s), since
the ordering of push operations with rf1 (s, s) is the same as
previous (Lemma 2). To illustrate, we denote the accumulating
phase with rf0 (s, s) = 1 and rf1 (s, s) as Phase-1 and Phase-
2, respectively. Let πf1 (s, t) and rf1 (s, t) be the reserve and
residue of any node t ∈ V after Phase-1, respectively. Let
πf2 (s, t) and rf2 (s, t) be the reserve and residue of any node
t ∈ V after Phase-2, respectively. For any node t ∈ V , we
can derive a relationship between πf1 (s, t) and πf2 (s, t), and a
relationship between rf1 (s, t) and rf2 (s, t) as follows:

πf2 (s, t)

rf1 (s, s)
=
πf1 (s, t)

rf0 (s, s)
and

rf2 (s, t)

rf1 (s, s)
=
rf1 (s, t)

rf0 (s, s)
,

which could be verified by the example in Figure 3.
Moreover, we observe that if the residue of s obtained by

Phase-2 is larger than the residue threshold rhopmax, another
accumulating phase could be triggered. Let T denote the
total number of the accumulating phases with a given residue
threshold rhopmax. For any node t ∈ V , by summing up the
reserves (or residues) of t in all T accumulating phases, we
can obtained the final reserve (residue) of t w.r.t s. Instead of
generating T accumulating phases one by one, the updating
phase of h-HopFWD exploits the relationships between the
reserve (or residue) of t obtained after the i-th accumulating
phase, denoted as πfi (s, t) (or rfi (s, t)), and the reserve πf1 (or
the residue rf1 (s, t)):

πfi (s, t)

rfi−1(s, s)
=
πf1 (s, t)

rf0 (s, s)
and

rfi (s, t)

rfi−1(s, s)
=
rf1 (s, t)

rf0 (s, s)
.

It also indicates that rfi (s, s) = [rf1 (s, s)]
i. Thus, the updating

phase computes the final reserve and residue of t in O(1) time,
leading to high efficiency. Specifically, in the updating phase,
if rf1 (s, s) is not equal to zero, it computes the reserve and
residue of each node t ∈ V as follows:

πf (s, t) = πf1 (s, t) · S (4)



rf (s, t) =

{
rf1 (s, t) · S , if t 6= s

[rf1 (s, t)]
T , otherwise

(5)

where S =
1−[rf1 (s,s)]

T−1

1−rf1 (s,s)
, T =

⌈
log[rhopmax·dout(s)]

log rf1 (s,s)

⌉
.

Algorithm 3 gives the pseudo-code of h-HopFWD. Lemma 3
shows that h-HopFWD computes the reserve and residue of
each node in the subgraph correctly (whose step-by-step proof
could be found in our technical report [16]).

Lemma 3. If rf1 (s, s) 6= 0, the reserve and residue
of any node t by h-HopFWD are correct. Besides,
rf (s, s) < rhopmax · dout(s).

Proof. We prove this using the relationships stated above.

Next, we bound the sum of non-zero residues of all nodes
obtained by h-HopFWD, denoted by rhopsum, in Lemma 4. Its
step-by-step proof could be found in our technical report [16].

Lemma 4. If rhopmax is small enough such that each node v ∈
Vh−hop(s) performs at least one push operation, then rhopsum is
bounded where rhopsum ≤ (1− α)h.

Proof. From the definition of RWR, we have the invariant
that rhopsum +

∑
v∈Vh−hop(s) π

f (s, v) = 1 after h-HopFWD
terminates. Based on this, we prove that rhopsum is largest
if h-HopFWD performs only one push operation at each
v ∈ Vh−hop(s), by which we can compute the residues of
nodes in Lj−hop(s) for each 0 ≤ j ≤ h. By summing up
those resides, we prove that rhopsum is at most (1− α)h.

V. ANOTHER TECHNIQUE: OMFWD

In the h-HopFWD phase, the push operations performed
at the nodes in the last layer of the h-hop subgraph (i.e.,
Lh−hop(s)) are “special” since they push the residues to
the nodes which are not in the subgraph, namely the nodes
in L(h+1)−hop(s). As defined, the nodes in L(h+1)−hop(s)
cannot perform the push operations even though their residues
satisfy the push condition. Thus, the residue of each node in
L(h+1)−hop(s) is accumulated to a large value.

Motivated by this, we propose OMFWD which performs
the forward push operations from the nodes with accumulated
residues. Algorithm 4 gives its pseudocode. Given a new
residue threshold rfmax, which is different from rhopmax used in
h-hopFWD, OMFWD performs the recursive push operations
at the nodes which satisfy the push condition with rfmax. After
termination, it returns the updated reserves and residues of all
node in the graph. Let rsum denote the sum of all residues after
OMFWD finishes. Note that rsum is very smaller, resulting in
less random walks in the remedy phase.

VI. OTHER RELATED WORK

A. Existing Work for SSRWR Query

For completeness, this section includes the existing work
for the SSPPR query and discusses how to extend the existing
work for the Multiple-Sources RWR (MSRWR) query. The ex-
isting approaches could be categorized into four types: (i) the
iterative-based approaches, (ii) the local update approaches,

Algorithm 4 OMFWD
Input: A graph G(V,E), a source node s, the restart probability α, and the residue

threshold rfmax, the current reserve πf (s, t) and residue rf (s, t) for each t ∈ V ,
the set L(h+1)−hop(s)

Output: Final reserve πf (s, t) and residue rf (s, t) for each t ∈ V
1: Enqueue each nodes in L(h+1)−hop(s) in the decreasing order of residue;
2: while the queue is not empty do
3: Dequeue a node from queue and set it to be t;
4: πf (s, t)← πf (s, t) + α · rf (s, t);
5: for each v ∈ Nout(t) do
6: rf (s, v)← rf (s, v) + (1− α) · r

f (s,t)
dout(t)

;
7: if rf (s, v)/dout(v) ≥ rfmax then
8: Enqueue node v to the queue;
9: rf (s, t)← 0;

10: Return πf (s, t) and rf (s, t) for each t ∈ V ;

(iii) the matrix-based approaches, and (iv) the Monte-Carlo-
based approaches. Table I compares them according to the
three requirements mentioned in Section 1.
Iterative-based. Power [21] is an index-free method which
iteratively updates the RWR values of all nodes w.r.t the source
until convergence. The time complexity of Power is O(mT )
since it traverses all edges in the graph in each iteration
where T is the number of iterations, which is huge on large
graphs and cannot satisfy the high-efficiency requirement.
TPA [32] is an index-based iterative method. Specifically, in
the preprocessing phase, TPA estimates the RWR values of
nodes far from the source node using their PageRank scores.
In the query phase, it estimates RWR values of nodes close
to the source node using Power. However, the same as Power,
TPA suffers from expensive time cost in the query phase.
Local update. There are two local update approaches in
the literature: Forward Search [2] (destribed in Section II-C)
and Backward Search [1], [27], both of which are index-
free. Unlike Forward Search, Backward Search performs a
graph traversal from a target node via the reverse direction
of edges and returns the approximate RWR values of a target
node w.r.t all the nodes in the graph. Backward Search is
computationally expensive for the SSRWR query since it has
to perform backward searches from each node in the graph.
Besides, both approaches cannot guarantee the result accuracy.
Matrix-based. According to [23], [24], [11], [14], given a
source node s, the RWR values of all nodes w.r.t s can
be computed to by πs = α(I− (1− α) · D−1AT )−1es. Thus,
the exact RWR values can be obtained by computing a matrix
inversion, which is time-consuming. The existing matrix-
based approaches utilize different matrix decompositions in
the preprocessing phase to reduce the time for computing
a matrix inversion in the query phase. Thus, most of them
are index-oriented and do not satisfy the index-free require-
ment. Frequently-used matrix optimization methods include:
low-rank approximation [24], LU decomposition [22], QR
decomposition [11], [22], and Complete Schurment [23], [14].
Unfortunately, most of the matrix-based approaches does not
meet the high-efficiency requirement since they take O(n2)
query time in the worst case. Besides, some of them cannot
provide the accuracy guarantee (e.g., B-LIN [24] and QR [11]).
Monte-Carlo-based. The Monte-Carlo-based technique is ex-



ploited by BiPPR [23], HubPPR [26], TopPPR [30] and
FORA/FORA+ [29], [28] (described in Section II). Among
them, BiPPR and HubPPR were proposed for the pairwise
PPR query, where the goal is to approximate the value π(s, t)
given a pair of nodes s and t. BiPPR is a combination of
Random Walk sampling and Backward Search [1], which first
generates a number of random walks from source s, then
runs Backward Search from target t, and finally estimates
π(s, t). HubPPR is the index-version of BiPPR, which stores
the results of random walk sampling (and backward search) for
some “hub” nodes in the preprocessing phase. However, when
being adapted for SSRWR query, both BiPPR and HubPPR
are time-consuming since they have to execute the backward
search for each node in the graph. As shown in [29], FORA
runs faster than BiPPR and HubPPR, guaranteeing the same
relative error. TopPPR was proposed for the top-K PPR query.
It combines Forward Search, Backward Search and Random
walk sampling to return the top-K nodes. Although it is
index-free and can be adapted for the SSRWR query, it does
not satisfy the high-efficiency requirement since it needs to
perform the backward search from each node in the graph,
which is expensive.
Extension to MSRWR query. Unlike SSRWR query,
MSRWR takes as an input a set S of source nodes, and
outputs the RWR scores of each node in the graph w.r.t
each source node s ∈ S. However, to the best of our
knowledge, no existing work studies how to solve MSRWR
query efficiently. Meanwhile, no existing work conducted the
experiments for MSRWR query. We are the first one to conduct
the experiments for MSRWR. A natural method to extend
the existing methods for MSRWR query is executing them
for each node s ∈ S by |S| times where |S| is the number
of nodes in set S. Our experiments show that ResAcc is
the fastest for answering MSRWR query among all index-
free methods. Besides, ResAcc achieves the highest empirical
accuracy among all methods by up to 9 orders of magnitude.

B. Comparison with Particle Filtering

Particle Filtering (PF) [15], [13] is an alternative technique
of the Monte-Carlo simulations (i.e. MC) by combining a
“deterministic” distribution phase and a random sampling
phase. Suppose that the total number of random walks to
be generated is w. In the “deterministic” distribution phase,
PF computes a value wv for each node v ∈ V where wv
is the number of random walks starting from the source
node s visiting v. Specifically, for each node whose wv
divided by its out-degree dout(v) is at least a threshold wmin
(i.e., wv

dout(v)
≥ wmin), for each out-neighbour u of v, PF

“deterministically” increases wu by wv
dout(v)

. But, for each node
v whose wv divided by dout(v) is smaller than wmin, PF
switches to the random sampling phase by randomly selecting
an out-neighbour u of v and increasing wu by wmin. This
random phase for node v repeats for at most b wv

wmin
c times.

However, PF cannot provide the accuracy of estimated RWR
values and its “empirical” accuracy is low since its randomized
process directly select an out-neighbour of a node based on a

TABLE II
DATASETS.(K = 103 , M=106 , B=109)
Dataset n m m

n h

DBLP 317K 2.1M 6.6 3

Web-Stan 282K 2.3M 8.2 2

Pokec 1.63M 30.6M 18.8 2

LJ 4.8M 69.0M 17.4 2

Orkut 3.1M 117.2M 38.1 2

Twitter 41.7M 1.5B 35.3 2

Friendster 65.7M 2.1B 38.1 2

TABLE III
THE AVERAGE QUERY TIME (IN SECONDS) OF EACH INDEX-FREE

ALGORITHM FOR SSRWR QUERY VS. DATASET. THE WORD “O.O.T”
MEANS THE ALGORITHM RUNS EXCEEDING 1 DAY.

Power FWD MC FORA TopPPR ResAcc

DBLP 76.596 2.60 19.21946 1.091 1.0324 0.5126
Web-Stan 0.324 3.904 9.2242 0.182 0.1534 0.031

Pokec 733.174 22.400 118.23 13.945 69.4092 5.6384
LJ 958.011 45.405 262.54 23.715 78.8589 11.9546

Orkut 4452.06 123.715 451.8 596.186 196.211 23.064
Twitter 68566.12 720.796 8389.34 979.516 1672.6 274.722

Friendster o.o.t 2863.45 o.o.t o.o.t o.o.t 643.828

user-specified parameter wmin. The larger the wmin, the larger
the error. Our experiments show that PF was outperformed by
ResAcc in terms of accuracy by up to 4 orders of magnitude,
running in similar query time.

VII. EXPERIMENTS

A. Experimental Setup

All experiments were conducted on a Linux machine with
Intel 2.20GHz CPU and 64GB memory. We used 7 real graphs
in our experiments: DBLP, Web-Stan, Pokec, LJ, Orkut, Twitter
and Friendster, which are the benchmarks in previous stud-
ies [26], [29], [23], [14]. Table II summarizes their statistics.
For each dataset, we chose 50 source nodes uniformly at
random. An average query time was reported.

We compared our proposed approach, ResAcc, against 9
existing algorithms, which can be categorized into two types:
index-free approaches and index-oriented approaches. Specif-
ically, the index-free approaches are: (1) Power, which gen-
erates the ground truth [21], (2) Forward Search (FWD) [2],
(3) Random Walk sampling (MC) [4], (4) FORA, which has
the best query performance among Monte-Carlo-based algo-
rithms [29], (5) TopPPR, which has the best query performance
for the top-K query [30], and (6) ResAcc, which is our
proposed method. Since TopPPR solves the top-K query, we
let K = 105 to optimize the performance of TopPPR in terms
of both the efficiency and accuracy (the effect of K for TopPPR
was evaluated in Section VII-F). We did not compare ResAcc
with other existing index-free methods in Table I since they
are empirically outperformed by the above 5 existing methods
in [29]. Besides, the index-oriented approaches are: (1) BePI,
which has the best performance among matrix-based index-
oriented algorithms [14], (2) TPA, which has the best perfor-
mance among iterative-based index-oriented algorithms [32],
and (3) FORA+ [29]. The performance of other index-oriented
algorithms introduced in Section VI were dominated by the
above approaches as evaluated in [14], [29] and thus, are



TABLE IV
PERFORMANCE OF EACH INDEX-BASED ALGORITHM VS. ResAcc.(“O.O.M” MEANS “OUT OF MEMORY”)

Dataset
Average query time Preprocessing time Index size Graph

sizeBePI TPA FORA+ ResAcc BePI TPA FORA+ ResAcc BePI TPA FORA+ ResAcc

DBLP 0.272 3.136 0.16 0.5126 4.165 7.31 10.359 0 156.1MB 15MB 38.9MB 0 18.4MB

Web-Stan 0.09 0.856 0.157 0.031 2.550 3.59 3.84 0 113.3MB 6.7MB 38.4MB 0 10.4MB

Pokec 12.131 38.256 1.771 5.6384 65.357 70.96 112.334 0 2.65GB 40MB 330MB 0 130.8MB

LJ 20.282 85.916 3.786 11.9546 140.621 167.6 190.559 0 5.088GB 120MB 583MB 0 295.2MB

Orkut o.o.m 140.271 9.019 23.064 o.o.m 282.74 453.741 0 o.o.m 76MB 879MB 0 950.1MB

Twitter o.o.m 1954.957 165.715 274.722 o.o.m 4323.74 5634.31 0 o.o.m 1.1GB 12.6GB 0 6.2GB

Friendster o.o.m o.o.m o.o.m 643.828 o.o.m o.o.m o.o.m 0 o.o.m o.o.m o.o.m 0 31GB

excluded. We obtained the codes of BePI from [14], TPA
from [32], FORA/FORA+ from [29] and TopPPR from [30].
All algorithms were implemented in C++ except BePI and
TPA implemented in both C++ and Matlab (due to the matrix
operation library usage).

For all methods, α = 0.2 following previous work [26],
[29], [30], [2], [32]. For fair comparison, we set the parameters
of each approach mainly following the best setting reported
in [18], [29], [14], [26]. Specifically, we set rfmax to be 10−12

in FWD and we tune the hub selection ratio in BePI so that
its efficiency is maximized on each dataset. In MC, FORA,
FORA+ and ResAcc, we set δ = 1/n, pf = 1/n, and ε = 0.5.
Moreover, in ResAcc, we set rfmax = 1

10·m , rhopmax = 10−14.
The value of h for each dataset is as shown in the last column
of Table II. The effect of parameter h and rhopmax are evaluated
in our technical report [16] and Section VII-G, respectively.

Following [30], we evaluated the accuracy of each method
using two classic metrics: absolute error and Normalized
Discounted Cumulative Gain (NDCG). Detailed description
of NDCG could be found in [30].

B. Experimental Results for SSRWR Query

1) Query Time: Index-free approaches. Table III shows
the query time of the index-free approaches. From Table III,
we observe that ResAcc takes the least time consistently in
all cases. For example, on Twitter, ResAcc is 250 times faster
than Power and is around 3 times faster than FWD, FORA
and TopPPR. In particular, compared with FORA (the state-
of-the-art), ResAcc is at least 2 times faster on most datasets. it
clearly demonstrates that ResAcc satisfies the high-efficiency
requirement even on large-scale graphs.
Index-oriented approaches. Table IV compares ResAcc
against the index-oriented approaches by measuring the query
time, the preprocessing time and the index size for each
approach. Note that ResAcc is index-free and so, it has zero
preprocessing time and index size. However, it is compared in
this experiment to verify that even without indexing, ResAcc
can achieve a comparable query time as the index-oriented
approaches. and meanwhile, it gets rid of the large prepro-
cessing time and high space overhead, making it suitable
for supporting online SSRWR. Thus, ResAcc satisfies the
high-efficiency requirement and the index-free requirement,
Compared with TPA, ResAcc runs faster in the query phase
by up to 6 times on all datasets. It is because TPA has to
traverse the whole graphs by many iterations in the query

phase. Compared with BePI, ResAcc answers SSRWR query
faster even without the indexing structures on most datasets.
It is because BePI needs to execute many matrix-vector
multiplications, each of which requires O(n2) query time in
the worst case. Moreover, BePI runs out of memory on large-
scale datasets, e.g., Orkut and Twitter, which indicates that
BePI is not scalable to large graphs. Compared with FORA+,
ResAcc is slightly slower. However, FORA+ suffers from the
costly preprocessing time. For example, on Twitter, it takes
FORA+ around 1.5 hours to construct an index structure,
which is unacceptable if graphs are changed dynamically.
Moreover, FORA+ runs out of memory in the preprocessing
phase on large graphs (e.g., Friendster) since it needs to
generate a huge number of random walks and consumes huge
memory to store intermediate results. Besides, we evaluated
the index updating time for each index-oriented approach when
the graph is dynamically changed, the results indicate that
without the large index updating time, ResAcc is a superior
option for dynamic graphs than those index-oriented (see in
our technical report [16] for more details).

Besides, to verify the effect of each phase in ResAcc, we
conducted an ablation study on ResAcc. Due to the space
limit, the details and the results are shown in our technical
report [16]. In summary, on average over 6 datasets, the h-
HopFWD phase, the OMFWD phase and the remedy phase
take about 1.79%, 64.58% and 33.63% of the total time,
respectively. In addition, to demonstrate the effect of each
trick used in ResAcc (the accumulating loop strategy, the h-
hop induced subgraph, and the OMFWD phase), we compared
ResAcc against different variants by removing each trick from
ResAcc. For lack of space, the results are shown in our
technical report [16]. In summary, all results demonstrate that
each trick in ResAcc helps to improve the efficiency of ResAcc.

2) Accuracy: We proceed with the experiments measur-
ing the accuracy of each approach (we only focus on ap-
proaches which guarantee relative errors as ResAcc) in terms
of absolute error and NDCG. Firstly, following previous
work [30], we reported the average absolute error of the k-
th largest RWR values in Figure 4 where k is varied from
{1, 10, 102, 103, 104, 105}. Due to space limit, the results on
dataset WebStan could be found in our technical report [16].
Note that BePI on Orkut and Twitter are omitted since it runs
out of memory. Besides, since FORA+ has the same accuracy
as FORA, we plotted the accuracy of FORA only. According to
the results, the absolute error of ResAcc is among the smallest
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Fig. 4. The absolute error of each algorithm. BePI is omitted on Orkut and Twitter since it runs out of memory.
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Fig. 5. The NDCG of each algorithm. BePI is omitted on Orkut and Twitter since it runs out of memory.
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on all datasets. In particular, on Twitter, the absolute error
of ResAcc is lower than that of FORA by up to 4 orders of
magnitude. It is due to the h-hopFWD and OMFWD phases
of ResAcc where a huge amount of residues are converted
into reserves (a part of optimal RWR values) and so only
small rsum needs to be pushed further via the remedy process.
However, FORA only converts a small amount of residues into
reserves and estimates the RWR values by utilizing a lot of
random walks (which are “randomized” RWR values).

Secondly, in terms of NDCG (see Figure 5), we computed
the NDCG value of each method by considering the k nodes
with the highest RWR values returned by each method (where
k is varied from {1, 10, 102, 103, 104, 105}). Our experiments
show that all the methods except TopPPR and TPA can order
the important nodes correctly on all dataset. Specifically, TPA
has bad performance on Twitter (which is large-scale) since
TPA approximates the RWR values for nodes which are not
close to the source node by directly using their PageRank
scores, which are not exactly the RWR values.

3) Fair comparison with FORA: For fair comparison with
FORA, we evaluated two perspectives: (1) we measured the
absolute error of results when ResAcc and FORA run in similar
query times, and (2) we measured the query time when ResAcc
and FORA output the results with similar absolute errors.

For the first perspective, we terminate the running of FORA
as long as it takes as more query time than ResAcc in one
specific dataset. We used Twitter for evaluation. The results in
terms of absolute error are illustrated in Figure 6(a). We can
see that ResAcc returns the values with much smaller absolute
error than FORA by up to 6 orders of magnitude. It is because
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Fig. 7. Boxplot: performance distribution of each algorithm on DBLP.
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Fig. 8. Boxplot: performance distribution of each algorithm on Twitter.

FORA cannot generate random walks from most of nodes in
the graph when the time is over. For the second perspective,
the details could be found in our technical report [16] for
the lack of space. We evaluated on 3 datasets, namely DBLP,
Pokec, and Twitter. The results are illustrated in Figure 6(b).
We can see that ResAcc runs in less query time than FORA
by up to around 4 times.

4) Performance for the outliers: In this section, we evalu-
ated the performance distribution (instead of the average per-
formance) of 6 methods, namely MC, BePI, FORA, TopPPR,
TPA and ResAcc (we excluded other existing methods since
they have been outperformed by these 6 methods in the
previous section) on two datasets (i.e., DBLP and Twitter).
Specifically, we use two visualization tools, namely “boxplot”
(which reports min, Q1, median, Q3, and max among the
results of all query nodes) and “error-bar” (which reports the
mean and the standard deviation of all results), to show the
performance distribution in terms of query time, absolute error
and NDCG. The results plotted by “boxplot” are illustrated in
Figure 7 and Figure 8, while the results plotted by “error-bar”
are illustrated in Figure 9 and Figure 10. On dataset Twitter,
the results of BePI are not plotted since it runs out of memory.

By “boxplot”, the results show that ResAcc achieves better
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performance than other methods for handling the outliers in all
terms of query time, absolute error and NDCG. Specifically,
on Twitter, the maximum query time cost of ResAcc for a
SSRWR query is the smallest. In addition, on Twitter, ResAcc
has the lowest variability than all existing methods in terms of
query time. Besides, ResAcc has the greatest accuracy among
all methods in terms of absolute error. Similar findings could
be found by using “error-bar”. In summary, the results show
that ResAcc achieves better performance than other methods
for handling the outliers in 3 aspects.

C. Comparison with Particle Filtering

In this section, we examined the performance of ResAcc
compared with PF in terms of average query time, absolute
error and NDCG. We included MC for comparison since PF is
a variant of MC. Besides, since PF has no accuracy guarantee,
we set the total number of random walks used in PF to be
equal to that in MC for fair comparison. We tested on DBLP
and Twitter, and for each dataset, we set wmin to be 104 to
optimize its performance in terms of efficiency and accuracy.
Due to space limit, the results could be found in our technical
report [16]. In summary, our experiments show that although
PF takes similar query time to ResAcc, its performance in
terms of absolute error and NDCG is outperformed by ResAcc
by up to 4 orders of magnitude and nearly 3 times, respectively.

D. Effect of The Characteristics of Query Nodes

This section evaluated the performance of each method for
the query nodes with the highest out-degrees. We included
4 index-free methods: MC, FORA, TopPPR and ResAcc, all
of which have shown their superiority over other methods in
previous sections. Specifically, we used two datasets, namely
DBLP and Twitter, and chose 20 nodes with the largest out-
degrees in each dataset. For the lack of space, the results
are illustrated in our technical report [16]. In summary, our
experiments show that ResAcc takes the least query time
among all methods on all datasets. Besides, ResAcc achieves
the highest accuracy than existing methods.

E. Experimental Results for Multiple-Sources RWR Query

This section evaluates the performance of each algorithm
for MSRWR query. We varied the number of sources |S|
from {25, 50, 75, 100}, and used two datasets: DBLP and

Twitter. We included two types of methods for comparison
with ResAcc: the index-free methods (i.e., MC, FORA and
TopPPR) and the index-based methods (i.e., BePI, FORA+
and TPA). Besides, for each method, the average query time
and the absolute error were evaluated (we excluded NDCG
here since most of methods could order the nodes correctly,
which have been shown in Section VII-B2). For the lack of
space, the results could be found in our technical report [16].
In summary, the results show that ResAcc takes the least
query time compared with the index-free methods by up to
2 orders of magnitude. Although ResAcc is slightly slower
than FORA+, ResAcc avoids the heavy preprocessing cost
and could be easily applied to large-scale dynamic graphs
(while FORA+ cannot), and ResAcc has higher accuracy than
FORA+. Finally, ResAcc achieves the highest accuracy among
all existing methods by up to nearly 3 orders of magnitude.

F. Fair Comparison with TopPPR

For fair comparison with TopPPR, we vary the value of K in
TopPPR by setting it from from {5×103, 1×104, 5×104, 1×
105, 5 × 105}. For each K, we evaluated the performance of
TopPPR in terms of average query time, average absolute
error, and NDCG of the k nodes with the highest RWR
values on two datasets, namely DBLP and Twitter, where
k = 105. Due to space limit, the results could be found in
our technical report [16]. To sum up, our experiments show
that ResAcc always takes less query time cost than TopPPR on
both datasets by up to 2 orders of magnitude. Besides, with
different k, ResAcc always achieves smaller absolute error than
TopPPR by up to 2 orders of magnitude, and ResAcc always
orders the important nodes correctly while TopPPR does not.
Finally, we conducted an experiment to show the accuracy
of both ResAcc and TopPPR when they take similar query
time on Twitter. The results show that ResAcc achieves higher
accuracy than TopPPR by up to 3 orders of magnitude.

G. Effect of rhopmax in ResAcc

This section evaluated the effect of rhopmax in ResAcc. The
setting is as follows: we varied the value of rhopmax from the
set {10−7, 10−8, 10−9, 10−10, 10−11, 10−12, 10−13, 10−14}
on DBLP. For parameters h and rfmax, we set it by default
(see Section VII-A). For each dataset, we measured the
performance of ResAcc in terms of query time, absolute error
and NDCG. Due to space limit, the experimental results could
be found in our technical report [16]. In summary, ResAcc
takes the least query time cost when rhopmax is set to be 10−11.
Besides, the performance of ResAcc has non-monotonic
behaviour with the value of rhopmax. It is because a smaller
value of rhopmax makes the h-HopFWD phase take more query
time to stop while a larger value makes the accumulated
residues at the (h+1)-th layer smaller, leading to the OMFWD
phase spend more query time. Thus, a proper choice of rhopmax

could minimize the query time cost of ResAcc.

H. ResAcc for Overlapping Community Detection

In this section, we examined the effectiveness of community
detection using SSRWR queries and the effectiveness of Re-



TABLE V
THE EFFECT OF SSRWR QUERIES FOR COMMUNITY DETECTION.

Dataset Method
Average

Normalized Cut
Average

Conductance

Facebook
NISE [31] 0.2233 0.1917

NISE-without-SSRWR 0.5710 0.5601

DBLP
NISE [31] 0.2365 0.2118

NISE-without-SSRWR 0.4719 0.4148

TABLE VI
THE RESULTS OF OVERLAPPING COMMUNITY DETECTION.

Dataset Approach
Total Time

(in seconds)
Average

Normalized Cut
Average

Conductance

Facebook
FORA [29] 3.8 ×103 0.2394 0.203

ResAcc (ours) 2.5 × 103 0.2297 0.1950

DBLP
FORA [29] 1.5×104 0.2437 0.2151

ResAcc (ours) 6.4 × 103 0.2373 0.2121

sAcc for overlapping community detection. Our experiments
were conducted with NISE [31] (which adopts SSRWR queries
as an important component for finding high-quality over-
lapping communities). Due to space limit, the experimental
setting could be found in our technical report [16]. We used
two common metrics in the literature to evaluate the quality
of detected communities, namely Average Normalized Cut
(ANC) and Average Conductance (AC). The smaller the value,
the better the quality of communities. Table V and Table VI
show the results of the effectiveness of community detection
using SSRWR queries and the effectiveness of ResAcc for
overlapping community detection, respectively. In summary,
the results show that ResAcc is faster than FORA. Besides,
ResAcc returns the communities of better quality than FORA.

Summary: In summary, ResAcc outperforms most existing
approaches in query time by up to 4 times, satisfying the
high-efficiency requirement. Meanwhile, ResAcc not only
guarantees the accuracy of the estimated RWR values (i.e.,
satisfies the output-bound requirement) but also has higher
empirical accuracy than the state-of-the-art by up to 6 orders
of magnitude. Finally, ResAcc is index-free and thus, it can be
easily applied on both static and dynamic graphs. ResAcc is
the first algorithm which satisfies all requirements for SSRWR
simultaneously.

VIII. CONCLUSION AND FUTURE WORK

We present ResAcc for the approximate SSRWR query.
ResAcc is based on the idea of residue accumulation so that it
is able to avoid a mass of redundant computations, leading to
higher efficiency than the existing algorithms. We provide the
theoretical analysis of ResAcc in terms of both accuracy and
query time. Extensive experiments demonstrate the superiority
of ResAcc in terms of both efficiency and accuracy. Finally,
the theoretic insight on why ResAcc is faster than FORA is an
interesting future work due to its significant performance.
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