
Favorite+: Favorite Tuples Extraction via Regret Minimization
Min Xie

Shenzhen Institute of Computing Sciences,
Shenzhen University, China

xiemin@sics.ac.cn

Yang Liu
School of Computer Science and Engineering, Beihang

University, China
1844061236@buaa.edu.cn

ABSTRACT
When faced with a database containing millions of tuples, a user
might be only interested in some of them. In this paper, we study
how to help an end user to find the favorite tuples based on the
recent advancements in regret minimization queries, which guaran-
tees the tuples returned are not far from the user’s favorite tuple in
the database, without asking the user to scan the entire database.

We consider three types of regret minimization queries: (1) End-
to-end query: Given an output size 𝑘 , we directly return a subset of
at most 𝑘 tuples from the database; (2) Interactive query: We identify
the user’s favorite tuple via user interaction, where a user might be
presented with a few pairs of tuples, and the user is asked to indicate
the one s/he favors more from each pair; and (3) Incremental query:
Analogous to how we use search engines, if the user is not satisfied
with the current tuples, we continually return more. We developed
a demonstration system, called Favorite+, by supporting the above
queries. We demonstrate that the system could help the users to
find their favorite tuples in the database efficiently and effectively.

CCS CONCEPTS
• Information systems → Data analytics.

KEYWORDS
regret minimization; user interaction; data analytics
ACM Reference Format:
Min Xie and Yang Liu. 2022. Favorite+: Favorite Tuples Extraction via Regret
Minimization. In Proceedings of the 31st ACM International Conference on
Information and Knowledge Management (CIKM ’22), October 17–21, 2022,
Atlanta, GA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3511808.3557188

1 INTRODUCTION
Nowadays, a database typically contains millions of tuples, but only
some of them are needed by the user. To assist the user for finding
the tuple s/he is interested in, operators have to be developed. Such
operators are useful in various domains, including house buying,
car purchase and job search. Consider a used car database, where
each car tuple is described by some attributes (e.g., price, year
purchased and horse power). Assume that Alice wants to find an
inexpensive and new car from the database. In the literature [3, 6,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557188

11], Alice’s preference is represented by a monotonic preference
function, called a utility function, in hermind. Based on this function,
each car in the database has a utility and the car with the highest
utility is the favorite car of Alice. There can be many candidate cars
in the database (even after filtering some uninteresting cars which
do not satisfy the criteria specified by Alice) and thus, Alice might
have to trade-off between different attributes (e.g., Alice might be
willing to pay more on buying a used car that is recently purchased
than buying an old one). This trade-off is individualistic and not
known by the system in a complete way. Hence, traditional queries,
e.g., the top-𝑘 query, cannot be applied in this scenario.

In this paper, we tackle this problem using the regret minimiza-
tion query. Intuitively, this query quantifies how regretful a user is
using a criterion called “regret raio”, if s/he is provided with a small
set of tuples, but not the favorite tuple in the database, and it aims
to make the regret ratio as small as possible, without asking the user
to provide the utility function explicitly. We consider three types
of regret minimization queries in this paper, namely the end-to-end
query, the interactive query, and the incremental query.

The proper choice of queries depends on the application needs
and the levels of interaction that a user is willing to provide. To il-
lustrate the trade-offs between different queries, assume that we are
helping Alice to find her favorite car in the database. If Alice cannot
provide any information on her utility function, she can execute the
end-to-end query, by providing a maximum output size 𝑘 . Then, the
system selects a set of at most 𝑘 cars from the database and show
them to Alice, guaranteeing the highest utility of the cars returned
is not much worse than the utility of Alice’s favorite car in the
database, regardless of Alice’s utility function. Alice can examine
the cars in the returned set and find a car that is the closest to her fa-
vorite one. Alternatively, although Alice cannot explicitly tell us her
utility function (which is difficult to answer), she might be willing to
provide us some “hints” on what her utility function might look like
(which is easier to provide), via the interactive query. Specifically,
the system can present Alice with a few pairs of cars and ask Alice
to pick the one she favors more from each pair. The car favored by
Alice might differ from other non-favorite cars in some ways, which
reflects the trade-off in Alice’s mind. With more rounds of interac-
tion, we can implicitly learn more about Alice’s utility function and
determine her favorite car in the database. This kind of interaction
is considered in [6, 7, 9] and naturally appears in our daily life.
Moreover, if we have shown Alice some cars but Alice is still not
satisfied, the system can run the incremental query, to return𝑘 more
cars for Alice to consider. This is analogous to how we use search
engines. This iterative process continues until Alice is satisfied
with the results. In this paper, we automate the above process by
supporting all three types of queries, which has many applications
such as product recommendation and self-guided shopping.

5049

https://doi.org/10.1145/3511808.3557188
https://doi.org/10.1145/3511808.3557188
https://doi.org/10.1145/3511808.3557188
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3511808.3557188&domain=pdf&date_stamp=2022-10-17

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Min Xie & Yang Liu

There are some existing systems [1, 7] which approach the prob-
lem based on the regret minimization query. However, they have the
following drawbacks: (1) They only support some interactive regret-
minimization queries and none of them have considered the end-to-
end query and the incremental query, which are also useful in many
practical scenarios. (2) For the interactive queries they support, they
either asked the user to spend great effort on sorting a short list of
candidate tuples, or asked the user a lot of questions to determine
the desired favorite tuple, which is not practical. (3) Users are not al-
lowed to manipulate the data via the existing systems, e.g., for data
upload, attributes selection, preference indication. There are also
some machine learning based systems [2, 5] which conduct inter-
active data exploration with a similar goal. However, their methods
cannot provide any guarantee on the result quality, while our meth-
ods are able to theoretically guarantee the degree of satisfaction of
the users, by providing an upper bound on their regret ratios.

To address these limitations, we develop a novel system called
Favorite+, which is powered by our recent advancements in regret
minimization queries in [6, 8, 10], and it has the following attractive
features. Firstly, it integrates the end-to-end query, the interactive
query and the incremental query in the same system, to fit differ-
ent users’ needs. Secondly, we support a novel interactive query
inspired by [6], so that we can identify the user’s favorite tuple
with a small amount of interactions. Thirdly, we allow the users
to manipulate the data, by (1) uploading user-defined datasets, (2)
selecting the attributes that they are interested in, and (3) indicating
their preference on each attribute. Finally, Favorite+ ensures that
the tuples returned is not much worse than the user’s favorite tuple
in the database, since the methods used in our system provides
theoretical guarantee on the regret ratios. In this paper, we demon-
strate how to use Favorite+ to help users finding their favorite
tuples in the database. Our major contributions are summarized:

• We develop a system, Favorite+, for finding the user’s fa-
vorite tuple in the database, via three types of regret mini-
mization queries (end-to-end, interactive and incremental).

• Favorite+ provides several interfaces and supports novel
functionalities, such as attribute selection and preference
indication, for users to flexibly manipulate the data.

• We deploy Favorite+ on a used car database for an easy-
to-follow system demonstration, although an end user can
upload arbitrary user-defined datasets to use our system.

2 SYSTEM ARCHITECTURE
The input to our problem is a set 𝐷 with 𝑛 tuples (i.e., |𝐷 | = 𝑛) in a
𝑑-dimensional space (i.e., each tuple is described by 𝑑 attributes).

We denote the 𝑖-th dimensional value of a tuple 𝑝 ∈ 𝐷 by 𝑝 [𝑖]
where 𝑖 ∈ [1, 𝑑]. Without loss of generality, we assume that a larger
value in each dimension is more preferable to the user.

Same as [1, 6, 7], the user preference can be represented by an
unknown linear utility function, denoted by 𝑓 , which is a mapping
𝑓 : R𝑑+ → R+. A function 𝑓 is linear if 𝑓 (𝑝) = 𝑢 ·𝑝 where 𝑓 (𝑝) is the
utility of 𝑝 w.r.t. 𝑓 and, 𝑢 is a 𝑑-dimensional non-negative utility
vector where 𝑢 [𝑖] measures the importance of the 𝑖-th dimensional
value in the user preference. We assume that

∑𝑑
𝑖=1 𝑢 [𝑖] = 1 in this

paper and we call U = {𝑢 ∈ R+ | ∑𝑑
𝑖=1 𝑢 [𝑖] = 1} the utility space.

In particular, a user is interested in finding the tuple in 𝐷 which

maximizes the utility, denoted by Umax (𝐷,𝑢) = max𝑝∈𝐷 𝑢 · 𝑝 . The
tuple with the maximum utility is the favorite tuple of this user.

Given a set 𝑆 ⊆ 𝐷 and a user with utility vector 𝑢, the regret
ratio of this user is defined to be 1 − Umax (𝑆,𝑢)

Umax (𝐷,𝑢) . Intuitively, when
the maximum utility of 𝑆 is closer to the maximum utility of 𝐷 , the
regret ratio is smaller and the user feels more satisfied with 𝑆 .

2.1 Architecture Overview
The architecture overview of our system, Favorite+, is shown
in Figure 1. The users start with data preparation, including data
uploading, attribute selection, preference indication. Then, they can
choose a proper type of regret minimization query depending on
their needs. (1) If the end-to-end query is chosen, users are further
asked to input an integer 𝑘 , indicating the maximum number of
tuples they want to see. Then, the system returns at most 𝑘 tuples
from the database, so that the regret ratios of users are guaranteed.
(2) If the interactive query is chosen, the system interacts with
the users for rounds. At each round, we ask the users for their
preference among a pair of carefully selected tuples. Based on the
feedback, we implicitly learn the user’s utility function, until the
user’s favorite tuple is identified. (3) If the incremental query is
chosen, we continually return more tuples to the user, until the user
is satisfied with the results returned. In the following, we briefly
illustrate the major components of Favorite+ one by one.

2.2 Component Description
Data processing. Users can upload arbitrary datasets to use our
system. In order to support the regret minimization query on gen-
eral datasets, we need to process the data to the designated format.
Note that in realty, although each tuple can be described by many
attributes, not all of them are equally important to a user in making
the decision. For example, price and year purchased are two at-
tributes important to Alice, while horse power is not. Motivated by
this, users are allowed to manually select the attributes that they are
interested in our system. Moreover, even given the same attribute,
the preference of different users can be diverse. For example, when
buying a used car, one might want the horse power to be as large as
possible, while the other may not want the horse power to be too
large, since it is fuel-consuming. Users should be able to indicate
their preference on each attribute. Note that other techniques, e.g.,
skyline computation [4], can also be integrated as pre-processing
steps in our system and we omit their details for lack of space.
End-to-end query. Our system supports various algorithms for
the end-to-end query [8], which takes an integer 𝑘 as input, and
returns a set 𝑆 of at most 𝑘 tuples to the user. Among them, we
propose the-state-of-the-art algorithm, denoted by Sphere [10].

Specifically, to construct the set 𝑆 , Sphere “uniformly” divides
the utility spaceU into multiple partitions, where the utility vectors
in the same partition are similar. We pick a representative utility
vector 𝑢𝑠 from each partition. For each utility vector 𝑢𝑠 picked, we
include the tuples with high utilities w.r.t. 𝑢𝑠 into 𝑆 . Intuitively, by
doing so, no matter which partition the user’s utility vector 𝑢 lies
in, there is a selected representative utility vector, namely𝑢𝑠 , which
is in the same partition as 𝑢 and thus, similar to 𝑢. Since 𝑢 and 𝑢𝑠
are similar, the tuples with high utilities w.r.t. 𝑢𝑠 will also have high
utilities w.r.t. 𝑢, so that the user will be satisfied. By returning those

5050

Favorite+: Favorite Tuples Extraction via Regret Minimization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Start
End-to-end

Query

Interactive
Query

Incremental
Query

Return k tuples
The user
inputs an
interger k

The user
selects the one

s/he favors
more

The user is
presented with
a pair of tuples

Data
processing

Attribute
selection

Data upload

Preference
indicatoin

The user is
satisfied with

current tuples?

The
favorite
tuple is
found

Return k
more tuples

Yes

Loop

No

Until
End

Figure 1: System architecture Figure 2: Welcome

tuples in Sphere, the user’s regret ratio is guaranteed to be not
too large. Formally, Sphere showed the worst-case regret ratio to
be 𝑂 (𝑘−

2
𝑑−1), regardless of the utility function of users [10]. Other

end-to-end algorithms for regret minimization are surveyed in [8].
Interactive query.Wepresent a novel algorithm for the interactive
query, by developing a new strategy for selecting the tuple pairs to
display to the user, that is not considered in existing systems [1, 7].

Specifically, we maintain a region R in the utility space which
contains the user’s true utility vector 𝑢. Initially, R is the entire
utility space U. When the user answers more questions, we learn
more about his/her preference and R will be smaller. Note that the
user’s regret ratio is bounded proportionally to the size of R [9, 11].
When R is small enough, we can identify the user’s favorite tuple.
Assume the user prefers 𝑝 to𝑞 for some tuples 𝑝 and𝑞 in a round.We
define a utility hyperplane, denoted by ℎ𝑝,𝑞 , to be the hyperplane
passing through the origin 𝑂 with its unit normal in the same
direction as 𝑝 − 𝑞. The following lemma shows how we can update
R to be smaller based on ℎ𝑝,𝑞 , whose proof can be found in [9].

Lemma 2.1. Given R and two tuples 𝑝 and 𝑞, if a user prefers 𝑝 to
𝑞, the user’s utility vector 𝑢 must be in ℎ+𝑝,𝑞 ∩ R where ℎ+𝑝,𝑞 denotes
the half space above ℎ𝑝,𝑞 .

With Lemma 2.1, at each interaction, we select a pair of tuples,
namely 𝑝 and 𝑞, such that ℎ𝑝,𝑞 is the closest to the geometric center
ofR. Intuitively, thisℎ𝑝,𝑞 partitionsR “themost evenly” and thus,R
is shrunkmore rapidly comparedwith the existing approaches [1, 7].
We denote our algorithm for the interactive query by Parti(tion).
Increment Query. The incremental query has not been considered
in regret minimization analysis in the literature, which, however,
is also useful in practice. Analogous to how we use search engines,
a user can continually obtain more tuples in a incremental query,
in case that the user is not satisfied with the current set 𝑆 of tuples.

Define the maximum regret ratio of a set 𝑆 to be the worst-case
regret ratio w.r.t. all utility vectors in U, denoted by mrr(𝑆, 𝐷) =
max𝑢∈U 1 − Umax (𝑆,𝑢)

Umax (𝐷,𝑢) . Then the next tuple to be outputted is

𝑝∗ = argmax
𝑝∈𝐷

mrr(𝑆, 𝑆 ∪ {𝑝}), (1)

which can be obtained via Linear Programming (LP). Intuitively, 𝑝∗
is the tuple in 𝐷 that makes the users the most regretful and thus,
we return it to the user next. In the incremental query, the user is
invited to input an integer 𝑘 , which is the number of additional
tuples that s/he wants to see each time. In this case, Equation (1) is

executed for 𝑘 times to obtain 𝑘 new tuples to return. We denote
our algorithm for the incremental query as IncGreedy.

3 SYSTEM DEMONSTRATION
We develop the system called Favorite+, which integrates the data
processing and all three types of regret minimization queries. In
this section, we demonstrate it on a used car database1, but users
could also upload their own datasets to our system. Recall that Alice
wants an inexpensive and new car. We show how to help Alice to
find such a car via our system. There are four main interfaces in
Favorite+, namely the welcome page, the end-to-end query page,
the interactive query page and the incremental query page, in which
Alice can manipulate the data and perform the corresponding query.
We shot a video2 to demonstrate Favorite+. The interested readers
could find the source code3 and the demonstration system online4.

3.1 Data Processing
Figure 2 shows the the welcome page. In this used car database,
each car is described by 4 attributes, namely price (in USD), year
purchased, power (in HP) and used kilometers. Alice can explicitly
select the attributes she is interested in. For example, if Alice do
not care about the used kilometers when buying the car, she can
explicitly disable this attribute by clicking on the attribute name,
as shown in Figure 2. Moreover, Alice can specify her preference
on each attribute, e.g., a lower price and smaller used kilometers
are more preferable while a more recent purchase and a higher
power are more preferable. Similar to the systems in [1, 7], Alice
can also specify the acceptable value ranges on all attributes. For
example, Alice may specify the price from 1,000 USD to 15,000
USD (i.e., inexpensive cars) and the year purchased from 2015 to
2022 (i.e., new cars). If Alice does not have specific requirement on
the attribute values, she can leave them blank to use the default
setting. Besides, Alice can also specify the maximum number of
cars that she wants to retrieve for selection (e.g., we can use the
entire database with 60,000+ cars), and the proper algorithm (i.e.,
mode) to perform the query. Then, she can click the “Start” button.

After that, Favorite+ processes the dataset for the query stage
as follows. Firstly, it retrieves the quantified cars from the database,
whose attribute values are in the acceptable ranges specified by
1https://www.kaggle.com/orgesleka/used-cars-database
2https://youtu.be/kU-5qjtAhyw
3https://github.com/SICS-Fundamental-Research-Center/find-your-favorite-car
4https://mxieaa.github.io/Favorite

5051

https://www.kaggle.com/orgesleka/used-cars-database
https://youtu.be/kU-5qjtAhyw
https://github.com/SICS-Fundamental-Research-Center/find-your-favorite-car
https://mxieaa.github.io/Favorite

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Min Xie & Yang Liu

Figure 3: End-to-end query Figure 4: Interactive query Figure 5: Incremental query

Alice. Secondly, it processes each car, by discarding the disabled
attributes. For each remaining attribute, it normalizes the value via
min-max normalization if the attribute is not indicated as “smaller
better” (i.e., a smaller value is more preferable). Otherwise, the
attribute value is processed to be one minus the normalized value.

3.2 Regret Minimization Query
Favorite+ supports three types of regret minimization queries.
Below we demonstrate them one by one under different scenarios.

End-to-end query. Favorite+ supports 6 algorithms [8] for the
end-to-end query: in addition to the state-of-the-art algorithm
Sphere [10], GraphDP, BiSearch, SweepDP, DMM and Cube are
implemented for comparison. Among them, GraphDP, BiSearch
and SweepDP are 2-dimensional algorithms, restricted to tuples
with two attributes. Assume that Alice do not want to provide much
feedback, by selecting mode “sphere”. She will then be asked to
input an integer 𝑘 , indicating the maximum output size. Assume
that Alice enters “5”. Then, Favorite+ invokes algorithm Sphere,
which returns a set 𝑆 of at most 5 cars from the database 𝐷 to Alice,
together with the execution time and the maximum regret ratio
mrr(𝑆, 𝐷). The resulting interface is shown in Figure 3.

Note that the maximum regret ratio of 𝑆 is the worst-case regret
ratio bound w.r.t. all utility functions. The actual regret ratio of
Alice can be much smaller. Alice can click the button “Input D Di-
mensions” at the right of page, to input her utility vector𝑢 explicitly,
e.g., she can assignweight 40% to “Price” and 60% to “Year”. Based on
Alice’s preference, we can compute the utility of each car, identify
her favorite tuples in 𝑆 and 𝐷 and compute the actual regret ratio
of Alice, as shown in the bottom box in Figure 3. In this particular
example, although we just return 5 cars from 60,000+ candidates,
her favorite car is indeed returned, giving rise to a 0 regret ratio.

Interactive query. Favorite+ supports 3 algorithms for the inter-
active query, including our Parti algorithm, and Simplex and Ran-
dom in [7] for comparison. Assume that Alice agrees to interact with
our system. She can enter the interactive interface in Figure 4, by se-
lectingmode “Parti”. Specifically, Favorite+ interacts with Alice for
rounds and at each round, it displays a pair of cars and asks Alice to
pick the one she favors more (the top-left part in Figure 4). Accord-
ing to her feedback, Favorite+ updates the region R in the utility
space and computes the remaining cars in the database. Clearly,

with more rounds of interaction, R is smaller and fewer candidate
cars are left. To better understand this process, we plot R in the pref-
erence space and draw each remaining car in the data space in the
bottom-left part in Figure 4. Moreover, we provide two histograms
“Cars left vs. questions asked” and “Regret ratio bound vs. questions
asked” so that the user can visualize the progress. For example in
the figure, after Alice answers 5 questions, the number of candidate
cars is reduced by 97.6%. The cars pruned and cars remained after
each round are shown in the right part. In case that Alice is satisfied
the current cars, she can click the “Stop” button to stop immediately.

Incremental query. Alice could also opt to perform the incremen-
tal query by selecting mode “IncGreedy” if she wants continuous
results. In this case, Alice is asked to be further input an integer 𝑘 ,
representing the number of additional cars she wants to see each
time. After that, Alice will be presented the first set 𝑆 of 𝑘 cars from
the database 𝐷 . Same as the end-to-end query, Alice could also
input her utility vector 𝑢 explicitly, to compare her favorite tuples
in 𝑆 and 𝐷 . If she is not satisfied the current result 𝑆 , she can click
the “Next” button at the bottom of the page, and obtain 𝑘 more
cars from the database. This process continues until Alice finds her
desired car in the results or the database is exhaustive. Note that in
general, with more cars returned, Alice’s regret ratio will be smaller.
For the ease of visualization, we plot a histogram "Maximum regret
ratio vs. the number of rounds” in the middle of the page, so that
end users can clearly visualize the reduction on regret ratios, e.g.,
to determine whether they should continue to click “Next” or not.

4 CONCLUSION
In this paper, we show how to find the user’s favorite tuples in
a large database based on the recent techniques proposed for re-
gret minimization queries. We develop an easy-to-use system, Fa-
vorite+, which supports three types of regret minimization queries
on general datasets. Users are further allowed to manipulate the
data to fit individualistic needs. We demonstrated Favorite+ on a
used car database, showing our usefulness and effectiveness.

ACKNOWLEDGMENTS
The research is supported by Longhua Science and Technology
Innovation Bureau LHKJCXJCYJ202003 and Guangdong Basic and
Applied Basic Research Foundation 2022A1515010120.

5052

Favorite+: Favorite Tuples Extraction via Regret Minimization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

REFERENCES
[1] Chen C., J. Zheng, W. Yan, and M. Wang. 2020. IDEAL: IDEntifying the User’s

IdeAL Tuple via Sorting in the Database. In CIKM.
[2] Y. Diao, K. Dimitriadou, Z. Li, W. Liu, O. Papaemmanouil, K. Peng, and L. Peng.

2015. AIDE: an active learning-based approach for interactive data exploration.
VLDB (2015).

[3] D. Nanongkai, A.D. Sarma, A. Lall, R.J. Lipton, and J. Xu. 2010. Regret-Minimizing
Representative Databases. In VLDB.

[4] D. Papadias, Y. Tao, G. Fu, and B. Seeger. 2005. Progressive skyline computation
in database systems. In TODS.

[5] X. Qin, C. Chai, Y. Luo, and N. Tangand G. Li. 2020. Interactively Discovering
and Ranking Desired Tuples without Writing SQL Queries. In SIGMOD.

[6] W. Wang, R. C.-W. Wong, and M. Xie. 2021. Interactive Search for one of the
Top-k. In SIGMOD.

[7] M. Xie, T. Chen, and R. C.-W. Wong. 2019. FindYourFavorite: An Interactive
System for Finding the User’s Favorite Tuple in the Database. In SIGMOD.

[8] M. Xie, R. Wong, and A. Lall. 2020. An Experimental Survey of Regret Minimiza-
tion Query and Variants: Bridging the Best Worlds between Top-𝑘 Query and
Skyline Query. In VLDB Journal.

[9] M. Xie, R. C.-W. Wong, and A. Lall. 2019. Strongly Truthful Interactive Regret
Minimization. In SIGMOD.

[10] M. Xie, R. C.-W. Wong, J. Li, C. Long, and A. Lall. 2018. Efficient k-regret query
algorithm with restriction-free bound for any dimensionality. In SIGMOD. ACM.

[11] J. Zheng and C. Chen. 2020. Sorting-based interactive regret minimization. In
APWeb-WAIM.

5053

	Abstract
	1 Introduction
	2 System Architecture
	2.1 Architecture Overview
	2.2 Component Description

	3 System Demonstration
	3.1 Data Processing
	3.2 Regret Minimization Query

	4 Conclusion
	Acknowledgments
	References

